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Abstract
In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost η−Ricci solitons
in some curvature tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits η−Ricci
soliton have introduced according to the choice of some special curvature tensors such as Riemann, concircular,
projective, M−projective, W1 and W2. Then, again according to the choice of the curvature tensor, necessary
conditions are given for Lorentz Sasakian space form admits η−Ricci soliton to be Ricci semisymmetric. Then
some characterizations are obtained and some classifications have made under the some conditions.
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1. Introduction
The notion of Ricci flow was introduced by Hamilton in 1982. With the help of this concept, Hamilton found the canonical
metric on a smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially
for those manifolds with positive curvature. Perelman used Ricci flow and it surgery to prove Poincare conjecture in [1, 2]. The
Ricci flow is an flow is an evolution equation for metrics on a Riemannian manifold defined as follows:

∂

∂ t
g(t) =−2S (g(t)) .

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution to the Ricci flow is called Ricci soliton if it
moves only by a one parameter group of diffeomorphism and scaling.

During the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathematicians. In
particular, it has become more important after Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in 1904. In [3], Sharma studied the Ricci solitons in contact geometry. Thereafter Ricci solitons in contact metric
manifolds have been studied by various authors such as Ashoka et al. in [4, 5], Bagewadi et al. in [6], Ingalahalli in [7], Bejan
and Crasmareanu in [8], Blaga in [9], Chandra et al. in [10], Chen and Deshmukh in [11], Deshmukh et al. in [12], He and Zhu
[13], Atçeken et al. in [14], Nagaraja and Premalatta in [15], Tripathi in [16] and many others.

φ−sectional curvature plays an important role for Sasakian manifold. If the φ−sectional curvature of a Sasakian manifold
is constant, then the manifold is a Sasakian-space-form [17]. P. Alegre and D. Blair described generalized Sasakian space
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forms [18]. P. Alegre and D. Blair obtained important properties of generalized Sasakian space forms in their studies and
gave some examples. P. Alegre and A. Carriazo later discussed generalized indefinite Sasakian space forms [19]. Generalized
indefinite Sasakian space forms are also called Lorentz-Sasakian space forms, and Lorentz manifolds are of great importance
for Einstein’s theory of Relativity.

In this paper, we consider Lorentz Sasakian space form admitting almost η−Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentz Sasakian space form admits η−Ricci soliton have introduced according to the choice of
some special curvature tensors such as Riemannian, concircular, projective, M−projective, W1 and W2. Then, again according
to the choice of the curvature tensor, necessary conditions for Lorentz Sasakian space form admits η−Ricci soliton to be Ricci
semisymmetric are given. Then some characterizations are obtained and some classifications have been made

2. Preliminaries
Let Ñ be a (2m+1)−dimensional Lorentz manifold. If the Ñ Lorentz manifold with (φ ,ξ ,η ,g) structure tensors satisfies the
following conditions, it is called a Lorentz-Sasakian manifold

φ 2Y1 =−Y1 +η (Y1)ξ ,η (ξ ) = 1,η (φY1) = 0,

g(φY1,φY2) = g(Y1,Y2)+η (Y1)η (Y2) ,η (Y1) =−g(Y1,ξ ) ,(
5̃Y1

φ
)

Y2 =−g(Y1,Y2)ξ −η (Y2)Y1,5̃Y1
ξ =−φY1,

where, 5̃ is the Levi-Civita connection according to the Riemannian metric g.
The plane section Π in TY1Ñ. If the Π plane is spanned by Y1 and φY1, this plane is called the φ -section. The curvature of

the φ -section is called the φ -sectional curvature. If the Lorentz-Sasakian manifold has a constant φ -sectional curvature, this
manifold is called the Lorentz-Sasakian space form and is denoted by Ñ (c). The curvature tensor of the Lorentz-Sasakian
space form Ñ (c) is defined as

R̃(Y1,Y2)Y3 =
( c−3

4

)
{g(Y2,Y3)Y1−g(Y1,Y3)Y2}

+
( c+1

4

)
{g(Y1,φY3)φY2−g(Y2,φY3)φY1

+2g(Y1,φY2)φY3 +η (Y2)η (Y3)Y1−η (Y1)η (Y3)Y2

+g(Y1,Y3)η (Y2)ξ −g(Y2,Y3)η (Y1)ξ} ,

(2.1)

for all Y1,Y2,Y3 ∈ χ
(
Ñ
)
.

Lemma 2.1. Let Ñ (c) be the (2m+1)−dimensional Lorentz-Sasakian space form. The following relations are hold for the
Lorentz-Sasakian space forms.

5̃Y1
ξ =−φY1, (2.2)

(
5̃Y1

φ
)

Y2 =−g(Y1,Y2)ξ −η (Y2)Y1,

(
5̃Y1

η
)

Y2 = g(φY1,Y2) ,

R̃(Y1,Y2)ξ = η (Y2)Y1−η (Y1)Y2, (2.3)

η
(
R̃(Y1,Y2)Y3

)
= g(η (Y1)Y2−η (Y2)Y1,Y3) , (2.4)
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S (Y1,Y2) =

[
(m+2)c− (3m−2)

2

]
g(Y1,Y2)

+
(c+1)(m+1)

2
η (Y1)η (Y2) ,

S (Y1,ξ ) =−
[
(c+1)−4m

2

]
η (Y1) , (2.5)

QY1 =

[
(m+2)c− (3m−2)

2

]
Y1−

(c+1)(m+1)
2

η (Y1)ξ

Qξ =
(c+1)−4m

2
ξ

where R̃,S are the Riemannian curvature tensor, Ricci curvature tensor of Ñ (c), respectively.

Precisely, Ricci soliton on a Riemannian manifold
(
Ñ,g

)
is defined as a triple (g,ξ ,κ1) on Ñ satisfying

Lξ g+2S+2κ1g = 0,

where Lξ is the Lie derivative operator along the vector field ξ and κ1 is a real constant. We note that if ξ is a Killing vector
field, then the Ricci soliton reduces to an Einstein metric (g,κ1) . Futhermore, in [20], generalization is the notion of η−Ricci
soliton defined by J.T. Cho and M. Kimura as a quadruple (g,ξ ,κ1,κ2) satisfying

Lξ g+2S+2κ1g+2κ2µη⊕η = 0, (2.6)

where κ1 and κ2 are real constants and η is the dual of ξ and S denotes the Ricci tensor of Ñ. Furthermore if κ1 and κ2 are
smooth functions on Ñ, then it called almost η−Ricci soliton on Ñ [20].

Suppose the quartet (g,ξ ,κ1,κ2) is almost η−Ricci soliton on manifold Ñ. Then,
· If κ1 < 0, then Ñ is shrinking.
· If κ1 = 0, then Ñ is steady.
· If κ1 > 0, then Ñ is expanding.

3. Almost η−Ricci Solitons on Ricci Pseudosymmetric and Ricci Semisymmetric
Lorentz Sasakian Space Form

Now let (g,ξ ,κ1,κ2) be an almost η−Ricci soliton on Lorentz Sasakian space form. Then we have(
Lξ g
)
(Y1,Y2) = Lξ g(Y1,Y2)−g

(
LξY1,Y2

)
−g
(
Y1,LξY2

)
= ξ g(Y1,Y2)−g([ξ ,Y1] ,Y2)−g(Y1, [ξ ,Y2])

= g
(
∇ξY1,Y2

)
+g
(
Y1,∇ξY2

)
−g
(
∇ξY1,Y2

)
+g(∇Y1ξ ,Y2)−g

(
∇ξY2,Y1

)
+g(Y1,∇Y2ξ ) ,

for all Y1,Y2 ∈ Γ(T M) . By using φ is anti-symmetric and taking into account (2.2) we have(
Lξ g
)
(Y1,Y2) = 0. (3.1)

Thus, in a Lorentz Sasakian space form, from (2.6) and (3.1) we have

S (Y1,Y2)+κ1g(Y1,Y2)+κ2η (Y1)η (Y2) = 0. (3.2)
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It is clear from (3.2) that the (2m+1)−dimensional Lorentz Sasakian η−Ricci soliton
(
Ñ2m+1,g,ξ ,κ1,κ2

)
is an η−Einstein

manifold.
For Y2 = ξ in (3.2) this implies that

S (ξ ,Y1) = (κ1−κ2)η (Y1) . (3.3)

Taking into account of (3.3) we conclude that

κ1−κ2 =
4m− (c+1)

2
.

Definition 3.1. Let Ñ (c) be an (2m+1)−dimensional Lorentz Sasakian space form. If R̃ ·S and Q(g,S) are linearly dependent,
then the Ñ (c) is said to be Ricci pseudosymmetric.

In this case, there exists a function L1 on Ñ (c) such that

R̃ ·S = L1Q(g,S) .

In particular, if L1 = 0, the manifold Ñ (c) is said to be Ricci semisymmetric.
Let us now investigate the Ricci pseudosymmetry case of the (2m+1)−dimensional Lorentz Sasakian space form.

Theorem 3.2. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
Ricci pseudosymmetric, then

L1 =
2κ1− (c+1)+4m
4m−2κ1− (c+1)

,

provided 2κ1 6= 4m− (c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost η−Ricci
soliton on Lorentz Sasakian space form Ñ (c). Then we have(

R̃(Y1,Y2) ·S
)
(Y4,Y5) = L1Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T Ñ
)
. From the last equation, we can easily write

S
(
R̃(Y1,Y2)Y4,Y5

)
+S
(
Y4, R̃(Y1,Y2)Y5

)
= L1

{
S ((Y1∧g Y2)Y4,Y5)+S (Y4,(Y1∧g Y2)Y5)

}
.

(3.4)

If we choose Y5 = ξ in (3.4) we get

S
(
R̃(Y1,Y2)Y4,ξ

)
+S
(
Y4, R̃(Y1,Y2)ξ

)
= L1 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.5)

If we make use of (2.3) and (2.5) in (3.5) we have

−
[
(c+1)−4m

2

]
η
(
R̃(Y1,Y2)Y4

)
+S (Y4,η (Y2)Y1−η (Y1)Y2)

= L1

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.6)

If we use (2.4) in the (3.6), we get

−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (η (Y2)Y1−η (Y1)Y2,Y4)

= L1

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.7)
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If we use (3.2) in the (3.7), we can write[(
κ1− (c+1)−4m

2

)
+
(

κ1 +
(c+1)−4m

2

)
L1

]
×

g(η (Y1)Y2−η (Y2)Y1,Y4) = 0.
(3.8)

It is clear from (3.8)

L1 =
2κ1− (c+1)+4m
4m−2κ1− (c+1)

.

This completes the proof.

Thus we have the following corollaries.

Corollary 3.3. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
Ricci semisymmetric, then Ñ (c) is an η−Einstein manifold with κ1 =

(c+1)−4m
2 and κ2 = (c+1)−4m.

Corollary 3.4. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
Ricci semisymmetric, then we observe that:
i) Ñ (c) is expanding, if (c+1)> 4m.
ii) Ñ (c) is shrinking, if (c+1)< 4m.

For a (2m+1)−dimensional semi-Riemannian manifold N, the concircular curvature tensor is defined as

C (Y1,Y2)Y3 = R(Y1,Y2)Y3−
r

2m(2m+1)
[g(Y2,Y3)Y1−g(Y1,Y3)Y2] . (3.9)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.9) we can write

C (Y1,Y2)ξ =

[
1+

r
2m(2m+1)

]
[η (Y2)Y1−η (Y1)Y2] , (3.10)

and similarly if we take the inner product of both sides of (3.9) by ξ , we get

η (C (Y1,Y2)Y3) =

[
1+

r
2m(2m+1)

]
g(η (Y1)Y2−η (Y2)Y1,Y3) . (3.11)

Definition 3.5. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If C ·S and Q(g,S) are linearly dependent,
then it is said to be concircular Ricci pseudosymmetric.

In this case, there exists a function L2 on Ñ (c) such that

C ·S = L2Q(g,S) .

In particular, if L2 = 0, the manifold Ñ (c) is said to be concircular Ricci semisymmetric.
Let us now investigate the concircular Ricci pseudosymmetry case of the Lorentz Sasakian space form.

Theorem 3.6. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
concircular Ricci pseudosymmetric, then

L2 =
[2κ1− (c+1)+4m] [2m(2m+1)+ r]

2m(2m+1) [4m− (c+1)−2κ1]
,

provided 4m 6= 2κ1 +(c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be concircular Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost
η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(C (Y1,Y2) ·S)(Y4,Y5) = L2Q(g,S)(Y4,Y5;Y1,Y2) ,
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for all Y1,Y2,Y4,Y5 ∈ Γ
(
T Ñ
)
. From the last equation, we can easily write

S (C (Y1,Y2)Y4,Y5)+S (Y4,C (Y1,Y2)Y5)

= L2
{

S ((Y1∧g Y2)Y4,Y5)+S (Y4,(Y1∧g Y2)Y5)
}
.

(3.12)

If we choose Y5 = ξ in (3.12) we get

S (C (Y1,Y2)Y4,ξ )+S (Y4,C (Y1,Y2)ξ )

= L2 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.13)

If by using (2.5) and (3.10) in (3.13) we have

S
(

Y4,
[
1+ r

2m(2m+1)

]
[η (Y2)Y1−η (Y1)Y2]

)
−
[
(c+1)−4m

2

]
η (C (Y1,Y2)Y4)

= L2

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.14)

Substituting (3.11) in (3.14), we get

−
[
(c+1)−4m

2

][
1+ r

2m(2m+1)

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+
[
1+ r

2m(2m+1)

]
S (η (Y2)Y1−η (Y1)Y2,Y4)

= L2

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (η (Y1)Y2−η (Y2)Y1,Y4)} .

(3.15)

If we use (3.2) in the (3.15), we can write[(
κ1− (c+1)−4m

2

)(
1+ r

2m(2m+1)

)
+
(

κ1 +
(c+1)−4m

2

)
L2

]
×

g(η (Y1)Y2−η (Y2)Y1,Y4) = 0.

This implies that

L2 =
[2κ1− (c+1)+4m] [2m(2m+1)+ r]

2m(2m+1) [4m− (c+1)−2κ1]
.

This completes the proof.

We can give the following corollaries.

Corollary 3.7. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
concircular Ricci semisymmetric, then Ñ (c) is either manifold with scalar curvature r =−2m(2m+1) or κ1 =

(c+1)−4m
2 .

Corollary 3.8. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
concircular Ricci semisymmetric, then we conclude that:
i) Let r < 2m(2m+1) .
a) Ñ (c) is expanding, if (c+1)> 4m.
b) Ñ (c) is shrinking, if (c+1)< 4m.
ii) Let r > 2m(2m+1) .
c) Ñ (c) is shrinking, if (c+1)> 4m.
d)Ñ (c) is expanding, if (c+1)< 4m.
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For a (2m+1)−dimensional semi-Riemannian manifold N, the projective curvature tensor is defined as

P(Y1,Y2)Y3 = R(Y1,Y2)Y3−
1

2m
[S (Y2,Y3)Y1−S (Y1,Y3)Y2] . (3.16)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.16) we can write

P(Y1,Y2)ξ =
c+1
4m

[η (Y2)Y1−η (Y1)Y2] , (3.17)

and in the same way if we take the inner product of both sides of (3.16) by ξ , we get

η (P(Y1,Y2)Y3) =
c+1
4m

g(η (Y1)Y2−η (Y2)Y1,Y3) . (3.18)

Definition 3.9. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If P ·S and Q(g,S) are linearly dependent,
then the manifold is said to be projective Ricci pseudosymmetric.

In this case, there exists a function L3 on Ñ (c) such that

P ·S = L3Q(g,S) .

In particular, if L3 = 0, the manifold Ñ (c) is said to be projective Ricci semisymmetric.
Let us now investigate the projective Ricci pseudosymmetry case of the Lorentz Sasakian space form.

Theorem 3.10. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
projective Ricci pseudosymmetric, then

L3 =
(c+1) [2κ1− (c+1)+4m]

2m [4m− (c+1)−2κ1]
,

provided 2κ1 6= 4m− (c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be projective Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost
η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(P(Y1,Y2) ·S)(Y4,Y5) = L3Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T Ñ
)
. From the last equation, we can easily see

S (P(Y1,Y2)Y4,Y5)+S (Y4,P(Y1,Y2)Y5)

= L3
{

S ((Y1∧g Y2)Y4,Y5)+S (Y4,(Y1∧g Y2)Y5)
}
.

(3.19)

If we choose Y5 = ξ in (3.19) we get

S (P(Y1,Y2)Y4,ξ )+S (Y4,P(Y1,Y2)ξ )

= L3 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.20)

If we taking into account (2.5) and (3.17) in (3.20), then we have

S
(
Y4,

c+1
4m [η (Y2)Y1−η (Y1)Y2]

)
−
[
(c+1)−4m

2

]
η (P(Y1,Y2)Y4)

= L3

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.21)
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If we use (3.18) in the (3.21), we get

−
[
(c+1)−4m

2

]( c+1
4m

)
g(η (Y1)Y2−η (Y2)Y1,Y4)

+
( c+1

4m

)
S (η (Y2)Y1−η (Y1)Y2,Y4)

= L3

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (η (Y1)Y2−η (Y2)Y1,Y4)} .

(3.22)

If we use (3.2) in the (3.22), we taking into account[(
κ1− (c+1)−4m

2

)( c+1
4m

)
+
(

κ1 +
(c+1)−4m

2

)
L3

]
×

g(η (Y1)Y2−η (Y2)Y1,Y4) = 0.
(3.23)

It is clear from (3.23)

L3 =
(c+1) [2κ1− (c+1)+4m]

2m [4m− (c+1)−2κ1]
.

This completes the proof.

We have the following corollaries.

Corollary 3.11. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
projective Ricci semisymmetric, then Ñ (c) is either real space form with constant section curvature c =−1 or κ1 =

(c+1)−4m
2 .

Corollary 3.12. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
projective Ricci semisymmetric, then we conclude provided that c+1 6= 0:
i) The soliton Ñ (c) is expanding, if (c+1)> 4m.
ii) The soliton Ñ (c) is shrinking, if (c+1)< 4m.

For a (2m+1)−dimensional semi-Riemannian manifold N, the M−projective curvature tensor is defined as

M (Y1,Y2)Y3 = R(Y1,Y2)Y3− 1
2m [S (Y2,Y3)Y1−S (Y1,Y3)Y2

+g(Y2,Y3)QY1−g(Y1,Y3)QY2]
(3.24)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.24) we can write

M (Y1,Y2)ξ = c+1
4m [η (Y2)Y1−η (Y1)Y2]

+ 1
2m [η (Y2)QY1−η (Y1)QY2] .

(3.25)

On the other hand, if we take the inner product of both sides of (3.24) by ξ , we get

η (M (Y1,Y2)Y3) =
c+1
4m g(η (Y1)Y2−η (Y2)Y1,Y3)

− 1
2m S (η (Y2)Y1−η (Y1)Y2,Y3) .

(3.26)

Definition 3.13. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If M · S and Q(g,S) are linearly
dependent, then it is said to be M−projective Ricci pseudosymmetric.

In this case, there exists a function L4 on Ñ (c) such that

M ·S = L4Q(g,S) .

In particular, if L4 = 0, the manifold Ñ (c) is said to be M−projective Ricci semisymmetric.
Let us now investigate the M−projective Ricci pseudosymmetric case of the Lorentz Sasakian space form admitting almost

η−Ricci soliton.



Almost η−Ricci Solitons on Pseudosymmetric Lorentz Sasakian Space Forms — 52/59

Theorem 3.14. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
M−projective Ricci pseudosymmetric, then

L4 =
4κ1 [(c+1)−2m]− (c+1) [(c+1)−4m]−4κ2

1
4m [2κ1− (c+1)+4m]

,

provided 2κ1 6= (c+1)−4m.

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be M−projective Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be
almost η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(M (Y1,Y2) ·S)(Y4,Y5) = L4Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T Ñ
)
. From the last equation, we have

S (M (Y1,Y2)Y4,Y5)+S (Y4,M (Y1,Y2)Y5)

= L4
{

S ((Y1∧g Y2)Y4,Y5)+S (Y4,(Y1∧g Y2)Y5)
}
.

(3.27)

If we choose Y5 = ξ in (3.27) we get

S (M (Y1,Y2)Y4,ξ )+S (Y4,M (Y1,Y2)ξ )

= L4 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.28)

If we make use of (2.5) and (3.25) in (3.28), we have

−
[
(c+1)−4m

2

]
η (M (Y1,Y2)Y4)

+S
(
Y4,

c+1
4m [η (Y2)Y1−η (Y1)Y2]

+ 1
2m [η (Y2)QY1−η (Y1)QY2]

)
= L4

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.29)

If we by using (3.26) in the (3.29), we get

− (c+1)[(c+1)−4m]
8m g(η (Y1)Y2−η (Y2)Y1,Y4)

+ (c+1)−4m
4m S (η (Y2)Y1−η (Y1)Y2,Y4)

+S
(
Y4,

c+1
4m [η (Y2)Y1−η (Y1)Y2]

+ 1
2m [η (Y2)QY1−η (Y1)QY2]

)
= L4

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (η (Y1)Y2−η (Y2)Y1,Y4)} .

(3.30)
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If we use (3.2) in the (3.30), we can write

− (c+1)[(c+1)−4m]
8m g(η (Y1)Y2−η (Y2)Y1,Y4)

−κ1[(c+1)−4m]
4m g(η (Y2)Y1−η (Y1)Y2,Y4)

−κ1(c+1)
4m g(Y4,η (Y2)Y1−η (Y1)Y2)

− κ1
2m S (η (Y2)Y1−η (Y1)Y2,Y4)

= L4

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

−κ1g(Y4,η (Y1)Y2−η (Y2)Y1,Y4)} .

(3.31)

Again, if we use (3.2) in the (3.31), we obtain[
κ1[(c+1)−4m]

4m + κ1(c+1)
4m − (c+1)[(c+1)−4m]

8m

− κ2
1

2m +L4

(
(c+1)−4m

2 −κ1

)]
×

g(η (Y1)Y2−η (Y2)Y1,Y4) = 0.

(3.32)

It is clear from (3.32)

L4 =
4κ1 [(c+1)−2m]− (c+1) [(c+1)−4m]−4κ2

1
4m [2κ1− (c+1)+4m]

,

which proves our assertion

We have the following corollaries.

Corollary 3.15. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
M−projective Ricci semisymmetric, then

κ1 =
(c+1)−4m

2
,

or

κ1 =
c+1

2
.

Corollary 3.16. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
M−projective Ricci semisymmetric, then we observe that:
i) Ñ (c) is shrinking, if κ1 is between (c+1)−4m

2 and c+1
2 ,

ii) Ñ (c) is steady for κ1 =
(c+1)−4m

2 and κ1 =
c+1

2 ,
iii) Ñ (c) is expanding for other cases of κ1.

For a (2m+1)−dimensional semi-Riemannian manifold N, the W1−curvature tensor is defined as

W1 (Y1,Y2)Y3 = R(Y1,Y2)Y3 +
1

2m
[S (Y2,Y3)Y1−S (Y1,Y3)Y2] . (3.33)

For a (2m+1)−dimensional Lorentz Sasakian space form, if we choose Y3 = ξ in (3.33), we can write

W1 (Y1,Y2)ξ =
8m− (c+1)

4m
[η (Y2)Y1−η (Y1)Y2] , (3.34)

and similarly if we take the inner product of both sides of (3.33) by ξ , we get

η (W1 (Y1,Y2)Y3) =
8m− (c+1)

4m
g(η (Y1)Y2−η (Y2)Y1,Y3) . (3.35)
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Definition 3.17. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If W1 · S and Q(g,S) are linearly
dependent, then the manifold is said to be W1−Ricci pseudosymmetric.

In this case, there exists a function L5 on Ñ (c) such that

W1 ·S = L5Q(g,S) .

In particular, if L5 = 0, the manifold Ñ (c) is said to be W1−Ricci semisymmetric.
Let us now investigate the W1−Ricci pseudosymmetric case of the Lorentz Sasakian space form.

Theorem 3.18. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
W1−Ricci pseudosymmetric, then

L5 =
[8m− (c+1)] [2κ1− (c+1)+4m]

4m [4m− (c+1)−2κ1]
,

provided 2κ1 6= 4m− (c+1) .

Proof. Let be assume that Lorentz Sasakian space form Ñ (c) be W1−Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost
η−Ricci soliton on Lorentz Sasakian space form Ñ (c). That is mean

(W1 (Y1,Y2) ·S)(Y4,Y5) = L5Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ
(
T Ñ
)
. From the last equation, we have

S (W1 (Y1,Y2)Y4,Y5)+S (Y4,W1 (Y1,Y2)Y5)

= L5
{

S ((Y1∧g Y2)Y4,Y5)+S (Y4,(Y1∧g Y2)Y5)
}
.

(3.36)

If we choose Y5 = ξ in (3.36) we get

S (W1 (Y1,Y2)Y4,ξ )+S (Y4,W1 (Y1,Y2)ξ )

= L5 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.37)

If we make use of (2.5) and (3.34) in (3.37), we have

S
(

Y4,
8m−(c+1)

4m [η (Y2)Y1−η (Y1)Y2]
)

−
[
(c+1)−4m

2

]
η (W1 (Y1,Y2)Y4)

= L5

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.38)

If we use (3.35) in the (3.38), we get

[4m−(c+1)][8m−(c+1)]
8m g(η (Y1)Y2−η (Y2)Y1,Y4)

+ 8m−(c+1)
4m S (η (Y2)Y1−η (Y1)Y2,Y4)

= L5

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (η (Y1)Y2−η (Y2)Y1,Y4)} .

(3.39)
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If we use (3.2) in the (3.39), we can write{
8m−(c+1)

4m

[
κ1 +

4m−(c+1)
2

]
+L5

[
(c+1)−4m

2 +κ1

]}
×

g(η (Y1)Y2−η (Y2)Y1,Y4) = 0
(3.40)

It is clear from (3.40)

L5 =
[8m− (c+1)] [2κ1− (c+1)+4m]

4m [4m− (c+1)−2κ1]
.

This completes the proof.

We can give the results obtained from this theorem as follows.

Corollary 3.19. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
W1−Ricci semisymmetric, then Ñ (c) is either real space form with c = 8m−1 constant section curvature or κ1 =

(c+1)−4m
2 .

Corollary 3.20. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
W1−Ricci semisymmetric, then we conclude that:
i) Let 8m > c+1.
a) Ñ (c) is expanding, if (c+1)> 4m.
b) Ñ (c) is shrinking, if (c+1)< 4m.
ii) Let 8m < c+1.
c) Ñ (c) is shrinking, if (c+1)> 4m.
d) Ñ (c) is expanding, if (c+1)< 4m.

For a (2m+1)−dimensional semi-Riemannian manifold N, the W2−curvature tensor is defined as

W2 (Y1,Y2)Y3 = R(Y1,Y2)Y3−
1

2m
[g(Y2,Y3)QY1−g(Y1,Y3)QY2] . (3.41)

For a (2m+1)−dimensional Lorentz Sasakian spacew form Ñ (c), if we choose Y3 = ξ in (3.41), we can write

W2 (Y1,Y2)ξ = [η (Y2)Y1−η (Y1)Y2]

− 1
2m [η (Y1)QY2−η (Y2)QY1] .

(3.42)

Furthermore, if we take the inner product of both sides of (3.41) by ξ , we get

η (W2 (Y1,Y2)Y3) = g(η (Y1)Y2−η (Y2)Y1,Y3)

+ 1
2m S (η (Y1)Y2−η (Y2)Y1,Y3) .

(3.43)

Definition 3.21. Let Ñ (c) be a (2m+1)−dimensional Lorentz Sasakian space form. If W2 · S and Q(g,S) are linearly
dependent, then the manifold is said to be W2−Ricci pseudosymmetric.

In this case, there exists a function L6 on Ñ (c) such that

W2 ·S = L6Q(g,S) .

In particular, if L6 = 0, the manifold Ñ (c) is said to be W2−Ricci semisymmetric.
Let us now investigate the W2−Ricci pseudosymmetric of the Lorentz Sasakian space form.

Theorem 3.22. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
W2−Ricci pseudosymmetric, then

L6 =
κ1 (1−2m)+m [(c+1)−4m]+κ2

1
m [2κ1 +(c+1)−4m]

,

provided 2κ1 6= 4m− (c+1) .
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Proof. Let be assume that Lorentz Sasakian space form be W2−Ricci pseudosymmetric and (g,ξ ,κ1,κ2) be almost η−Ricci
soliton on Lorentz Sasakian space form. That is mean

(W2 (Y1,Y2) ·S)(Y4,Y5) = L6Q(g,S)(Y4,Y5;Y1,Y2) ,

for all Y1,Y2,Y4,Y5 ∈ Γ(T M) . From the last equation, we can easily write

S (W2 (Y1,Y2)Y4,Y5)+S (Y4,W2 (Y1,Y2)Y5)

= L6
{

S ((Y1∧g Y2)Y4,Y5)+S (Y4,(Y1∧g Y2)Y5)
}
.

(3.44)

If putting Y5 = ξ in (3.44), we get

S (W2 (Y1,Y2)Y4,ξ )+S (Y4,W2 (Y1,Y2)ξ )

= L6 {S (g(Y2,Y4)Y1−g(Y1,Y4)Y2,ξ )

+S (Y4,η (Y2)Y1−η (Y1)Y2)} .

(3.45)

If we make use of (2.5) and (3.42) in (3.45), we have

−
[
(c+1)−4m

2

]
η (W2 (Y1,Y2)Y4)

+S (Y4, [η (Y2)Y1−η (Y1)Y2]

− 1
2m [η (Y1)QY2−η (Y2)QY1]

)
= L6

{
−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4,η (Y1)Y2−η (Y2)Y1)} .

(3.46)

If we use (3.43) in the (3.46), we get

−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+ 1
2m S (η (Y1)Y2−η (Y2)Y1,Y4)

+S (Y4, [η (Y2)Y1−η (Y1)Y2]

− 1
2m [η (Y1)QY2−η (Y2)QY1]

= L6 {S (Y4,η (Y1)Y2−η (Y2)Y1)

−
[
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

}
.

(3.47)

If we use (3.2) in the (3.47), we have[
κ1− κ1

2m −
(c+1)−4m

2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

+ κ1
2m S (η (Y1)Y2−η (Y2)Y1,Y4)

=−L6

[
κ1 +

(c+1)−4m
2

]
g(η (Y1)Y2−η (Y2)Y1,Y4)

(3.48)

Again, if we use (3.2) in (3.48), we obtain[
κ1− κ1

2m −
(c+1)−4m

2 − κ2
1

2m

+L6

(
κ1 +

(c+1)−4m
2

)]
g(η (Y1)Y2−η (Y2)Y1,Y4)

(3.49)
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It is clear from (3.49)

L6 =
κ1 (1−2m)+m [(c+1)−4m]+κ2

1
m [2κ1 +(c+1)−4m]

.

This completes the proof.

We can give a result of this theorem as follows.

Corollary 3.23. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
W2− Ricci semisymmetric, then

κ1 =−
1
2

[
−(2m−1)+

√
−4(c+2)m+20m2 +1

]
,

or

κ1 =
1
2

[
(2m−1)+

√
−4(c+2)m+20m2 +1

]
.

Corollary 3.24. Let Ñ (c) be Lorentz Sasakian space form and (g,ξ ,κ1,κ2) be almost η−Ricci soliton on Ñ (c) . If Ñ (c) is a
W2−Ricci semisymmetric, then we observe that
i) Ñ (c) is shrinking, if κ1 is between− 1

2

[
−(2m−1)+

√
−4(c+2)m+20m2 +1

]
and 1

2

[
(2m−1)+

√
−4(c+2)m+20m2 +1

]
,

ii) Ñ (c) is steady for − 1
2

[
−(2m−1)+

√
−4(c+2)m+20m2 +1

]
and 1

2

[
(2m−1)+

√
−4(c+2)m+20m2 +1

]
,

iii) Ñ (c) is expanding for other cases of κ1.

4. Conclusion
In this paper, we consider pseudosymmetric Lorentz Sasakian space forms admitting almost η−Ricci solitons in some curvature
tensors. Ricci pseudosymmetry concepts of Lorentz Sasakian space forms admits η−Ricci soliton have introduced according
to the choice of some special curvature tensors such as Riemann, concircular, projective, M−projective, W1 and W2. Then,
again according to the choice of the curvature tensor, necessary conditions are given for Lorentz Sasakian space form admits
η−Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and some classifications have made
under the some conditions.
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