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The aim of this paper is to study (k,u)-Paracontact metric manifold. We introduce the curvature tensors of a
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(k, p)-paracontact metric manifold satisfying the conditions R-P, =0,R-L =0,R-W; =0,R-W, =0 and
R -M = 0. According to these cases, (k, u)-paracontact manifolds have been characterized such as 7-Einstein
and Einstein. We get the necessary and sufficient conditions of a (k, u)-paracontact metric manifold to be -

Einstein. Also, we consider new conclusions of a (k,u)-paracontact metric manifold contribute to geometry.
We think that some interesting results ona (k, u)-paracontact metric manifold are obtained.
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Introduction

In 1985, Kaneyuki and Williams initiated the notion of
paracontact geometry [1]. Zamkovoy achieved
systematic research on paracontact metric manifolds and
some remarkable subclasses named para-Sasakian
manifolds [2]. Recently, B. Cappeletti-Montano, I. Kipeli
Erken and C. Murathan introduced a new type of
paracontact geometry so-called paracontact metric
(k, u) —space, where k and pu are constants [3]. This is
known [4] about the contact case k <1, but in the
paracontact case there is no restriction of k.

Zamkovoy studied paracontact metric manifolds and
some remarkable subclasses named para-Sasakian
manifolds. In particular, many authors have pointed to
the importance of paracontact geometry and para-
Sasakian geometry in recent years. A normal paracontact
metric manifold is a para-Sasakian manifold. An almost
paracontact metric manifold is a para-Sasakian manifold
if and only if [2]

Vg, #)B2 = —g(B1, B2) + n(B2) s

As a generalization of locally symmetric spaces, many
authors have studied semi-symmetric spaces and in turn
their generalizations. A semi-Riemannian manifold
(M#*1g), n>1, is said to be semi-symmetric if its
curvature tensor R satisfies R - R = 0 for all vector fields
B1, B, on M?™*1 where R(B;, B,) acts as a derivation on
[5,6]. D. Kowalezyk researched some subclass of semi-
symmetric manifolds [5].

On the other hand, B. Prasad introduced a pseudo
projective curvature tensor on a Riemannian manifold
[6]. S. Ivanov, D. Vassilev and S. Zamkovoy studied a
tensor invariant characterizing locally the integrable
paracontact Hermitian structures which are paracontact

Keywords: (k, ) —Paracontact manifold, 7 —Einstein manifold, Riemannian curvature tensor.

conformally equivalent to the flat structure on G(P) [7].
Since then several geometers studied curvature
conditions and obtain various important properties
[8,9,19].

The object of this paper is to study properties of the
some certain curvature tensor in a (k, ) —paracontact
metric manifold we research R-P, =0, R-L =0, R
W, =0,R-Wy =0 andR(X,Y)-M =0, whereR,P, L,
W;, W, and M denote the Riemannian, pseudo-
projective, conharmonic, W,, W, and M —projective
curvature tensors of manifold, respectively.

Preliminaries

An (2n + 1)-dimensional manifold M is called to
have a paracontact structure if it admits a (1,1) —tensor
field ¢, a vector field £ and a 1-form 7 satisfying the
following conditions [1]:

(D) ¢*By =P — 1B,

for any vector field §; € y(M), where y(M) the set of all
differential vector fields on M,

@nE)=Lnep=0¢5=0,

an almost paracontact manifold equipped with a pseudo-
Riemannian metric g such that

9(@B1, dB2) = —g (B, B2) + n(BIN(BL),
9B, §) =n(By) (1)

for all vector fields 8;, 8, € x(M). An almost paracontact
structure is called a paracontact structure if

9By, By) = dn(By, f,) with the associated metric g
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[2]. We now define a (1,1) tensor field h by h = %L;qﬁ,
where L denotes the Lie derivative. Then h is symmetric

and satisfies the conditions

h¢ = —¢h, Tr.h=Tr.ph=0  (2)

h& =0,
If 7 denotes the Levi-Civita connection of g, then we
have the following relation

Vg, §=—¢B + hp, (3)

for any B, € y(M) [2]. For a paracontact metric
manifold M2 (¢, &, 7, g), if € is a killing vector field or
equivalently, h =0, then it is called a K-paracontact
manifold.

An almost paracontact manifold is said to be para-
Sasakian if and only if the following condition holds

(g, ®IB2 = =9 (B1, B2)E + 1(B) Py

for all 51,8, € (M) [2]. A normal paracontact metric
manifold is para-Sasakian and satisfies

R(B1, B2)¢ = —(m(B2) B —n(B1)B2) (4)

for all B, B, € x(M), but this is not a sufficient condition
for a para-contact manifold to be para-Sasakian. It is
clear that every para-Sasakian manifold is K-paracontact.
But the converse is not always true [16].

A paracontact manifold M is said to be n-Einstein if its
Ricci tensor S of type (0,2) is of the from S(f,,5,) =
ag(By, B) + bn(Bi)n(B,),where a,b are smooth
functions on M. If b = 0, then the manifold is also called
Einstein [11].

A paracontact metric manifold is said to be a
(k, ) —paracontact manifold if the curvature tensor R
satisfies

R (B1, B2)§ = kn(B2) By — n(B1)B] + uln(B)hB; —
n(B1)hp.] (5)

forall 5;, B, € x(M), where k and u are real constants.
This class is very wide containing the para-Sasakian
manifolds as well as the paracontact metric manifolds

satisfying R(B, f,)¢ = 0 [12].

L(By,B2) = R(B1, B2)Bs -— [S(B2, B3)B1 — S(B1, B3) Bz + 9(Ba, B3)QB: — g(B1, B3)QS,],

2n-1

P.(B1, B2)Bs = aR(By, B>)Bs + b[S(B2, B3) By — S(B1, B3)B2] — —— (Za—n + b) L9 (B2, B3)B1 — g(B1, B3) ],
M(By, B2)B5 = R(B1, B2)B5 — — [S(B2. B3)B1 — S(B1, B3)B2 + g(Ba, B3)QBr — 9(Br, B3)QB:],

an

Wo (B1, B2)Bs = R(B1, B2)PBs —ﬁ [S(B2, B3)Br — 9(Br, B3)QB),
Wi (B, B2)Bs = R(B1, B2)Bs +ﬁ [S(B2, B3)Br — S(By, B3) 2],

for all By, Ba, B3 € x(M) [14].

In particular, if 4 =0, then the paracontact metric
manifold is called paracontact metric N(k)-manifold.
Thus, for a paracontact metric N(k)-manifold the
curvature tensor satisfies the following relation

R(B1, B2)¢ = k(m(B2)B1 — n(B1)B2) (6)

for all By, B, € x(M). Though the geometric behavior of
paracontact metric (k, ) —spaces is different according
as k< —1, or k> —1, but there are some common
results fork < —1and k > —1 [3].

Lemma 2.1 There does not exist any paracontact
(k, ) —manifold of dimension greater than 3 with k >
—1 which is Einstein whereas there exist such manifolds
fork < —1 [3].

In a paracontact metric  (k,u) —manifold
(M2, &, 1, g), n > 1, the following relation hold:

h? = (k + 1)¢?,for k # —1, (7)
(Vg, 0B, — g(By — hBy, B)E + (B (B — hBy),  (8)

S, B2) = [2(1 —n) + nulg(By, B2) + [2(n — 1) +
ulg(hpy, Bo) + [2(n — 1) +n(Zk — wWn(BIn(B), (9)

S(8,,©) = 2nkn(By), (10)
D ki gy
Q¢ = 2nkE, (0B, ) = S(Bu, ), (12
06 - $Q = 2[2(n — 1) + ulhg (13)

for any vector fields B, 8, on M?"*!1  where Q and S
denotes the Ricci operator and Ricci tensor of (M?™t1, ),
respectively [3].

The concept of conharmonic curvature tensor was
defined by Y. Ishii [13]. Conharmonic, pseudo-projective,
M —projective, W,-curvature tensor and W,-curvature
tensor of a (2n + 1)-dimensional Riemannian manifolds
are, respectively, defined

(14)
(15)
(16)
(17)
(18)

2n+1

(k,u)-Paracontact Manifolds and Their Curvature Classification in

In this part, we will give the major results for this paper.
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Let M be (2n + 1) —dimensional (k, ) —paracontact metric manifold and we denote conharmonic curvature tensor
by L, then from (14), we have for later

LBy, Bo)E = ——(B)B2 — (BB + uln(B)IRB: — n(B)RB] — —— [n(B2)QB: — n(B)QB,]- (19)

2n-1 2n-1
Putting 8; = &, in (19)

k
2n-1

L(E B)E = =B, — n(B)E] — php, — —— [2nkn(B,)¢ — Q] (20)

In (15), choosing 3 = & and using (5), we obtain

P.(By, )€ = |ak + 2nkb = —— (= +b)| ()1 — n(BIB:) + auCr (BB, — n(BIRE,). (21)

2n+1 \2n

In (21), it follows

r
2n+1

P.(§,52)§ = lak + 2nkb — —— (&= + B)|(1(8,)€ — ) — auhf. (22)
In the same way, putting B; = £ in (16) and using (5), we have

M(By, B2)E == ((Bo) By — n(BBs + (1 (BIRB; — n(BRB, — = (B0, — n(BIQE,). (23)
Using B, = & in (23), we get

M(E, B)§ = - QB — 22 — uhf,. (24)

In (17), choosing B; = &, we obtain

Wo(B1, B2)§ = in(/ﬂ)Qﬁz — kn(B)Bz + u(m(B)hBy —n(BRB). (25)
and
Wo (€, B¢ = 5= QB, — kB, — uhB,. (26)

In (18), choosing B; = ¢ and using (5), we obtain

Wi (B1, B2)§ = 2k(m(B) B — n(B1)B2) + 1(m(B2)hBy — n(B1)hB,). (27)
Setting 5; = £ in (27), we get

Wi (S, B2)¢ = 2k(m(B2)S — B2) — uhp,. (28)
From (5), we can derive

R(E,B) B3 = k(g(Bz, B3)§ — n(B3)B2) + (g (hBz, B3)S — n(B3)hp,), (29)
Choosing B3 = &, in (29)

R(E,B)$ = k(M(B2)§ — B2) — uhp,. (30)
Theorem 3.1 Let M?™"*1 (¢, &,1,9) be a (k, u)-paracontact space. Then M is a conharmonic semi-symmetric if and

only if M is an —Einstein manifold.
Proof. Suppose that M is a conharmonic semi-symmetric. This implies that

(R(B1, BIL) (B3, Bu)Bs = R(B1, f2)L (B3, Bu)Bs — L(R(By, B2)PBs, Ba)Bs — L(Bs, R(By, B2)Bu)Bs —
L(B3, B IR(By, B2)Bs = 0, (31)
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for any By, By, Ba, Be, Bs € x(M). Taking By = s = € in (31), making use of (19), (29) and (30), for B = ———, we
have

(R(E, BL)(B3, Ba)é = R(&, B2) (Bk(M(By)Bs — n(B3)Bs) + u(m(B)hBs — n(B3)hBs) + BM(B)QL: —n(B3)QB) —
L(k(g(B2, B5)§ — n(B3)B2) + u(g(hB,, B3)§ — n(B3)hB2, Ba)§ — L(Bs, k(g Bz, Ba)é —n(Ba)B2) + 1(g(hBs, Bu)é —
N(Ba)hB2)E — L(B3, Ba) (k((B2)E — B,) — uhp,) = 0. (32)

Taking into account (19), (20), (29) and inner product both sides of (32) by 5 € x(M)

kg(L(Bs, Ba)Bzs Bs) + ug(L(Bs, Ba)f B2, Bs) + k#(n(&)n(ﬁs)g(ﬁz, hB3) —n(B3)n(Bs)g(Bz, h,B4)) +p*(1+

k) (77(/34)77(/35)9(/32. B3) —n(B3)n(Bs)g(Ba, 54)) + BM(U(B‘L)U(BS)S(.BZ' hB3) —n(B:)n(Bs)S (B, h.B4)) +
Bk(n(ﬁdn(ﬁs)S(ﬁz.ﬁs) —n(Bs)n (,BS)S(,BZ',B4)) + anﬂB(U(ﬁ3)7](ﬁs)g(hﬁz'.34) - g(hﬂz:ﬂaz)rl(ﬂz;)rl(ﬂs)) +
anZB(g(ﬁz:ﬁ4)77(ﬁ3)77(Bs) - 9(32'53)77(,84)77(,85)) + Bk(g(ﬁz'ﬂ3)5(ﬂ4'ﬂs) - g(ﬂz:.&;)s(ﬂ@ﬂs)) +
BK?(g(hBs, B)S (Ba, Bs) + g(ho, BIS(Bs, B5)) + 1P (g (hBs, B) g (W, Bs) — 9 (hf, B g (hBs, Bs)) +

k(9 (Bar Bs)g (hBs, B5) + (B2, B g (hB3, Bs)) = 0. (33)

Putting (7), (10), (14) and choosing 8, = B, = e;,{,in (33), 1 < i < n, for orthonormal basis of (M), we arrive

k(1 = B)S(B3, Bs) + u(1 — B)S(Bs, hBs) + (Bkr + 2n(1 + k)[2(n — 1) + u] + p*(1 + k) — 2nk*B) g(Bs, Bs) +
(kuB — 2nkp)g(Bs, hfs) + (1>(1 + k)(2n + 1) — Bkr — 2nuB(1 + k)[2(n — 1) + u] + 2nk?B(2n +

D)n(BsIn(Bs) = 0. (34)
Using (7) and replacing hf35 of B in (34), we get

k(1= B)S(Bs, hs) + (1 = B)(1 + k)S(Bs, Bs) — Znku(1 + k) (1 = B)n(B)n(Bs) + (Bkr + 2n(1 + k)[2(n — 1) + u] +
u*(1+ k) — 2nk?B)g(Bs, hps) + (1 + k) (kpB — 2nkp) g(Bs, fs) — (1 + k) (kuB — 2nk)n(Bs)n(Bs) = 0. (35)

From (34), (35) and also using (9), for the sake of brevity we set
2nk
P =

Zznn_ul’

P2=5—0 2

: 2nk
ps = (-2 +2n(1 + K)[200 — 1) + p + p2(1 + k) + 25),
Py = (—% — 2nku),

K K

ps = (1 +Kk)(2n+1) +ﬁ+ 22:_’11 A+ B[2n=1)+ 4l —;:—_1(271 o
and

q1 = (Pap2 (1 + k) = psp)[2(n — 1) + p] + (papy — P30 [2(1 — 1) +nu],

a2 = (P} — P21+ K)[2(n— 1) + ul + (Dap1 — P3P2),

s = (4P, — Psp)[2(n — 1) + n(2k — )] — (p1ps + 2nkp3 (1 + k) + pyp, (L + K))[2(n — 1) + 4],
we conclude

425(B3, Bs) = 919 (B3, Bs) + qsn(Bz)n(Bs).

So, M is an 1 —Einstein manifold. Conversely, let M?"*1 (¢, &,71,g) be an n —Einstein manifold, i.e. q,S(B3,Bs) =
q19(Bs, Bs) + qsn(Bs)n(Bs), then from equations (35), (34), (33), (32) and (31) we obtain M is a conharmonic semi-
symmetric.

Theorem 3.2 Let M?™*1(¢, &, 1, g) be a (k, u)-paracontact space. Then M is a pseudo-projective semi-symmetric if
and only if M is an Einstein manifold.

Proof. Assume that M is a pseudo-projective semi-symmetric. This yields to

(R(ﬁl'ﬁZ)P*)(ﬁSJﬁtl)ﬁS = R(ﬁl! ﬁz)P*(ﬁ& ,84):85 - P*(R(ﬁpﬁz)ﬁ& ,34).35 - P*(ﬁ& R(ﬁp :82):84)[’)5 -
P.(Bs, BIR(By, B2)Bs = 0, (36)

for any 1,54, B3, Ba, Bs € x(M). Taking f; = Bs =& in (36) and using (21), (29), (30), for A = [ak + 2nkb —
. (% + b)], we obtain

2n+1
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(R(&, B2)P.)(Bs, B1)§ = R(E, B2) (A (Ba) Bs — n(B3)Bs) + au(m(Bu)hfs — n(Bs)hBs) — P.(k(g(B2, B3)E —
n(B3)Bz) + u(g(hpz, B3)E — n(Bs)hBs), Ba)§ — P.(B3, kg(Ba, Ba)é — n(Ba)B2) + u(g(hBs, Ba) — n(B)RBR)E —
P.(B3, B k(M (B2)E — B2) — uhp,) = 0. (37)

Again, taking into account that (21), (22), (29) in (37), we get

kP.(Bs, Bs)B; + UP.(Bs, B RS, + aku(m(Bs) g (Bz, hB3)E — n(B3) g(Bz, hB)E) + ap? (1 + k) ((B) g (B, B3)E —
N(B3) 9Bz, B)E) + Ak(g(Ba, Bs)Bs — g (B2, B)B3) + Ap(g(hBy, Bs)Bs) — g(hBa, Bu)B3) + au®(g(hBy, Bz)hBy —
9(hB2, B)RBs) + aku(g(Ba, Bz)hBs — g(Bz, B1)RB3) = 0. (38)

Putting B3 = &, using (7), (21) and inner product both sides of in (38) by £ € y(M), we get

bkS(B2, Ba) + buS(By, hB,) — 2nk?bg (B, Bs) — 2nkbug (B, hB) = 0 (39)

Replacing hf, of B, in (39) and making use of (7), we have

bkS(B, hBy) + bu(1 + k)S(B,, Bs) — 2nkbu(1 + k)n(BIn(Bs) — anzbg(ﬂz' hpB,) — 2nkbu(1 + k) g(B,, Ba) +
2nkbu(1 + kK)n(B)n(Bs) = 0. (40)

From (39) and (40), we obtain

S(B2 Ba) = 2nkg (B, Ba)-

Thus, M is an Einstein manifold. Conversely, let M2"*1(¢,&,n,g) be an Einstein manifold, i.e., S(B;,B:) =
2nkg(f,, B.), then from equations (40), (39), (38), (37) and (36), we arrive M is a pseudo-projective semi-symmetric.
This implies that

1
n=20k+1->).

Theorem 3.3 Let M2"*1(¢,&,7, g) be a (k, )-paracontact space. Then M is a M —projective semi-symmetric if and
only if M is an Einstein manifold.
Proof. Suppose that M is a M —projective semi-symmetric. This implies that

(R(B1, BIM) (B3, B)Bs = R(B1, fIM (B5, B)Bs — M(R(B1, B2) B3, Bu)Bs — M(Bs, R(By, B2)Bu)Bs —
M(ﬁ3'ﬁ4)R(ﬁ1:ﬁz)ﬁs =0, (41)

for any By, B2, Ps, Ba, Bs € x(M). Setting B, = fs = & in (41) and making use of (23), (29), (30), for A = S, B = —4i, we

n
obtain

(R(&, BIM)(B3, Ba)E = R(E, Bo) (A (B) B3 — n(B3)Bs) + (B hBs —n(Bz)hBy) + BM(B)QBs —n(B3)QBs) —
M(k(g(B2, B3)E —n(B3)B2) + (g (hBy, B3)E — n(B3)hp,), Ba)é — M(ﬁs' k(g(B2, B1)§ —n(Bs)p,) +
1(g(hBy, BE = n(BIRB))E — M(Bs, B) k(M (B)E — B2) — uhpB,) = 0. (42)

Inner product both sides of (42) by s € x(M), using of (23), (24) and (29), we get

kg(M (B3, B4) B2, Bs) + ug(M(Bs, B )hp,, Bs) + Ak(n(ﬁ4)n(ﬁs)g(ﬁz. hBs) —n(BsIn(Bs)g(Be, 34)) +uA(1+

k) (77(:34)77(35)9(133: B2) —n(B:In(Bs) g (B, :84)) + A#(n(ﬁ4)n(ﬁ5)g(hﬁz. B3) — n(BsIn(B3) g(hp,, ﬁ4)) +
kﬂ(n(ﬁ4)n(ﬁs)g(hﬁz:ﬁ3) —n(Bs)n(B3)g(hp,, :84)) + Bk(n(ﬁ4)n(ﬁ5)5(ﬁz. B3) —n(BsIn(B3)S (B, ﬁ4)) +
MB(n(ﬁ4)n (Bs)S(hps, B3) — n(Bs)n(B3)S(hpB,, :84)) + ak(g(ﬁz'ﬁ3)g(ﬁ5:ﬁ4) — 9By, ,84)9(,83'35)) +

k(g (B3, B2)9 (1Ba, Bs) — 9 (B2, B (hBa, Bs)) + 1 (g (hBs, Bs) g (hBa, B3) — 9 (hfz, Bi)g (hs, Bs)) +

Au(g(Bs, BIG(hB2, Bs) = 9 (B3, Bs)g (B, hBY)) = 0. (43)

Making use of (7), (16) and choosing 5 = s = e;, &, 1 < i < n, for orthonormal basis of y(M) in (43), we have

kS(By, B2) + uS(By, hB,) — anzg(ﬁ@ﬁz) — 2nkug(Ba, hf5;) = 0. (44)

Replacing hf3, of B, in (44) and taking into account (7), we get
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kS(By, hBo) + u(1 + k)S(By, B;) — 2nk?g(By, hB;) — 2nku(1 + k) g(By, ;) = 0. (45)

From (44), (45) and by using (9), we set

S(Bs B2) = 2nkg(B4, B),

This tell us M is an Einstein manifold. Conversely, let M2"*1(¢p,&,n, g) be an Einstein manifold, i.e., S(B,, B2) =
2nkg(Ba, ), then from equations (45), (44), (43), (42) and (41), we get M is a M —projective semi-symmetric.
Theorem 3.4 Let M2"*1(¢, &, 1, g) be a (k, p)-paracontact space. Then M is a W,-semi-symmetric if and only if M is
an 1 —Einstein manifold.

Proof. Assume that M is a W,-semi-symmetric. This means that

(R(ﬁpﬁz)wo)(ﬁ&ﬁwﬁs) = R(Bv,Bz)Wo (.83',84),85 - WO(R(.El'.EZ).BS'.BAI-).BS - Wo (,Bz»R(.Bp.Bz).&).Bs -
WO (»831 BAI—)R(BP Bz)ﬁs = 0' (46)

for any B4, By, B3, Ba, Bs € x(M). Setting f; = Bs = & in (46) and making use of (25), (29), (30), for A = —%, we obtain

(R(&, BIWH)(Bs, Ba)é = R(E, BZ)(_AT’(,B3)Q,B4 = kn(B3)Ba + um(B)RB; — 7](.33)}1.34)) — Wo(k(g(B2, B3)§ —
N(B3)B4) + u(g(hpy, B3)§ —n(Bs)hfB,, B1)E — Wy (.83' k(g(Bz, Ba)é — n(Bs)B2) + ulg(hBy, Ba)é — 7](.34)}1.32))5 -
Wo (B3, 1) (k(m(B,)§ — B2) — uhfs,) = 0. (47)

Using (25), (26), (29) and inner product both sides of (47) by S € y(M), we get

kg(Wo(Bs, Ba) B2, Bs) + ug(Wo (Bs, BB, Bs) + k#(n(ﬁ4)n(ﬁs)g(ﬂz. hBs) —n(B:In(Bs) g (Ba, hﬁ4)) +

p(1+ k)(n(ﬁ4)rl(ﬁs)g(ﬁz:ﬁ3) - 77(.33)77(.35)9(52'.34)) + anA(kU(53)7l(ﬂ4)g(ﬁz»ﬁ5) -

ﬂn(ﬁ4)ﬂ(ﬁ3)g(hﬁz'ﬁs)) + Ak(s(ﬁpﬁs)g(ﬂz:ﬂﬂ - 7](.33)7](.35)5(.82'.84)) + kz(g(ﬁz»%)g(ﬁs’.&t) -
g(ﬁz:ﬁzt)g(ﬁs'ﬁs)) + kﬂ(g(ﬁz:ﬁ3)g(hﬁ4:ﬁs) — 9Bz, Ba)g(hps, .85)) + Au(g(hﬁz, B3)S(Ba, Bs) —

g(hB, B)S(Bs, Bs)) + kﬂ(g(hﬁz: B3)g(Ba, Bs) + g(hp,, .84)9(.83”85)) +u? (g(hﬁz,.[%)g(hﬁzp Bs) —
g(hﬁZ:B4)g(hﬁ3'ﬁs)) - AM(S(hﬁz:ﬁ4)7)(ﬁ3)7)(ﬁs) + 7)(.83)7)(34)5@.82'.85)) - kA(S(.Bz,.Bs)TI(&)U(ﬁzt) +
S(Bs, Bs)g Bz B)) — k(n(BsIn(B:)g (B, Ba) — kn(BsIn(Bs)g (Ba, k) = 0. (48)

Making use of (7), (17) and choosing 8, = B, = e;, ¢, 1 < i < n, for orthonormal basis of y(M) in (48), we have

k(1—AQ@n+1))S(Bs, Bs) + uS(Bs, hps) + (kAT + 2npA(1 + k)[2(n — 1) + p] — 2nk? + @2>(1 + k) g(Bs, Ba) +
ku(1 —2n)g(Bs, hBs) + (—k?Q@2n+ 1) — Akr — p? (1 + k)2n+ 1) (—k*(2n + 1) — Akr — (1 + k)(2n +
1)77(33)77(35) =0. (49)

Replacing hfs of S5 in (49) and taking into account (7), it follows

k(1= AQ@n+1))S(Bs, hBs) + u(1 + k)S(Bs, Bs) — 2nku(1 + k)n(Bz)n(Bs) + (kAr + 2npA(1 + k)[2(n — 1) +
ul = 2nk® + p?(1 + k)g(Bs, hBs) + ku(1 + k) (1 = 2n)g(Bs, Bs) — ku(1 + k) (1 — 2n)n(Bz)n(Bs) = 0. (50)

From (49), (50) and by using (9), for the sake of brevity we set
1

pi=k (2 + Z),

pr = (—E - (1 + B[200 = 1) + 4] - 20k? + 21+ 1K),

p3 = kﬂ(l - Zn)! X
ps = (—k*Q2n+1) +7r —1?>A+Cn+1)—-k*@Cn+1)—p2(1+k)2n+1),
and

g1 = (p3u(1 + k) — p1p)[2(n — 1) + u] + (P13 — P2 [2(1 — n) + np,

a5 = (p? — 2+ K))[2(n— 1) + ul + (pyps — P2,

a3 = (0103 — pa)[2(n — 1) + n(2k — )] — (p1ps + 2nkp? (1 + k) + psu(1 + k) [2(n — 1) + 4],
we have

425 (B3, Bs) = q1.9(Bs, Bs) + qsn(Bz)n(Bs).
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Thus, M is an n —Einstein manifold. Conversely, let M?"*1(¢,&,7, g) be an n —Einstein manifold, i.e., q,S(B3, Bs) =
q19(Bs, Bs) + q3n(Bs)n(Bs), then from equations (50), (49), (48), (47) and (46) we obtain M is a W,-semi-symmetric.
Theorem 3.5 Let M?"*1 (¢, &,7, g) be a (k, 1)-paracontact space. Then M is a W, -semi-symmetric if and only if M is
an Einstein manifold.

Proof. Suppose that M is a W, -semi-symmetric. This means that

(R(ﬂ1'ﬁz)w1)(ﬁ3fﬁ4fﬁs) = R(,31'B2)W1 (53',84)35 - Wl(R(.Bl'.BZ)B3'ﬁ4)BS - W1(.33»R(.31:32)ﬂ4)55 -
Wy (53'54)13(51:52)55 =0, (51)

for any By, B2, B3, Ba, Bs € x(M). Setting B; = Bs = & in (51) and making use of (27), (29) and (30), we obtain

(RE, BIW) (B3, B.)¢ = R(E, Bz)(Zk(n(B4)B3 —n(B:)Bs) + um(BhS; — 7](.33)}1,34)) — Wy (k(g(B,, B3)¢ —
n(B3)Bz) + u(g(hpfz, B3) —n(Bs)hB,), ) — W, (.83' k(g(Bz, Ba)é — n(Ba)B2) + u(g(hBy, Ba)é — 7](.34)}1,32))5 -
Wi (Bs, B)(k((B2)¢ — B2) — uhpB,) = 0. (52)

Using (27) and (29), we get

kW1 (B3, Ba) Bz + Wy (B3, BB, + kum(Ba) g (B2, hB3)E — n(Bs)g(Bz, hBa)E) + p*(1+ k) (B g(Ba, B3)§ —
N(B:)9 (B2, B1)E) + 2k (g(By, B3)Bs — 9 (B2, Ba)B3) + k(g (Ba, Bz)RBs — g (B2, BIRPs) + 2k (g(hpBy, B3) By —
9(hBa, BLBs) + 1?(g(hBz, B3)hBy + g(hB,, B)RBs) = 0. (53)

Making use of (10), (18) and choosing f; = ¢ and inner product both sides of in (53) by & € y(M), we have

kS(Ba, B2) + 1S(Bs, hB;) — 2nk? g (By, By) — 2nkpg (B, By) = 0. (54)

Replacing hf3, of 5, in (54) and by using (7), we get

kS(Ba, hB2) + u(1 + k)S(Ba, hB,) — anzg(.gzp hB;) — 2nku(1 + k) g(Bs, B2) = 0. (55)

From (54) and (55), we obtain
S(B2, Bs) = 2nkg (B, Pa)-

So, M is an Einstein manifold. Conversely, let M2"*1(¢,&,7, g) be an Einstein manifold, i.e., S(B,, Bs) = 2nkg (B, fs),
then from equations (55), (54), (53), (52) and (51) we get M is a W, -semi-symmetric.
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