

Cumhuriyet Science Journal

csj.cumhuriyet.edu.tr

Founded: 2002

ISSN: 2587-2680 e-ISSN: 2587-246X

Publisher: Sivas Cumhuriyet University

(k,μ)-Paracontact Manifolds and Their Curvature Classification

Pakize Uygun 1,a,*

¹ Department Of Mathematics, Faculty Of Arts And Sciences, Tokat Gaziosmanpaşa University, Tokat, Türkiye.

*Corresponding author

Research Article

History

Received: 25/04/2022 Accepted: 01/08/2022

Copyright

ABSTRACT

The aim of this paper is to study (k,μ) -Paracontact metric manifold. We introduce the curvature tensors of a (k,μ) -paracontact metric manifold satisfying the conditions $R \cdot P_* = 0$, $R \cdot L = 0$, $R \cdot W_1 = 0$, $R \cdot W_0 = 0$ and $R\cdot M=0$. According to these cases, (k,μ) -paracontact manifolds have been characterized such as $\ \eta$ -Einstein and Einstein. We get the necessary and sufficient conditions of a (k,μ) -paracontact metric manifold to be η -Einstein. Also, we consider new conclusions of a (k,μ) -paracontact metric manifold contribute to geometry. We think that some interesting results on a (k, μ) -paracontact metric manifold are obtained.

Keywords: (k,μ) —Paracontact manifold, η —Einstein manifold, Riemannian curvature tensor.

Introduction

In 1985, Kaneyuki and Williams initiated the notion of paracontact geometry [1]. Zamkovoy systematic research on paracontact metric manifolds and some remarkable subclasses named para-Sasakian manifolds [2]. Recently, B. Cappeletti-Montano, I. Küpeli Erken and C. Murathan introduced a new type of paracontact geometry so-called paracontact metric (k,μ) -space, where k and μ are constants [3]. This is known [4] about the contact case $k \le 1$, but in the paracontact case there is no restriction of k.

Zamkovov studied paracontact metric manifolds and some remarkable subclasses named para-Sasakian manifolds. In particular, many authors have pointed to the importance of paracontact geometry and para-Sasakian geometry in recent years. A normal paracontact metric manifold is a para-Sasakian manifold. An almost paracontact metric manifold is a para-Sasakian manifold if and only if [2]

$$(\nabla_{\beta_1}\phi)\beta_2 = -g(\beta_1,\beta_2)\xi + \eta(\beta_2)\beta_1.$$

As a generalization of locally symmetric spaces, many authors have studied semi-symmetric spaces and in turn their generalizations. A semi-Riemannian manifold $(M^{2n+1},g), n \ge 1$, is said to be semi-symmetric if its curvature tensor R satisfies $R \cdot R = 0$ for all vector fields β_1, β_2 on M^{2n+1} , where $R(\beta_1, \beta_2)$ acts as a derivation on [5,6]. D. Kowalezyk researched some subclass of semisymmetric manifolds [5].

On the other hand, B. Prasad introduced a pseudo projective curvature tensor on a Riemannian manifold [6]. S. Ivanov, D. Vassilev and S. Zamkovoy studied a tensor invariant characterizing locally the integrable paracontact Hermitian structures which are paracontact conformally equivalent to the flat structure on G(P) [7]. Since then several geometers studied curvature conditions and obtain various important properties [8,9,19].

The object of this paper is to study properties of the some certain curvature tensor in a (k, μ) -paracontact metric manifold we research $R \cdot P_* = 0$, $R \cdot L = 0$, $R \cdot$ $W_1 = 0, R \cdot W_0 = 0$ and $R(X, Y) \cdot M = 0$, where R, P_*, L , W_1 , W_0 and M denote the Riemannian, pseudoprojective, conharmonic, W_1 , W_0 and M -projective curvature tensors of manifold, respectively.

Preliminaries

An (2n+1)-dimensional manifold M is called to have a paracontact structure if it admits a (1,1) -tensor field ϕ , a vector field ξ and a 1-form η satisfying the following conditions [1]:

(i)
$$\phi^2 \beta_1 = \beta_1 - \eta(\beta_1) \xi,$$

for any vector field $\beta_1 \in \chi(M)$, where $\chi(M)$ the set of all differential vector fields on M,

(ii)
$$\eta(\xi) = 1$$
, $\eta \circ \phi = 0$, $\phi \xi = 0$,

an almost paracontact manifold equipped with a pseudo-Riemannian metric *q* such that

$$\begin{split} g(\phi\beta_1,\phi\beta_2) &= -g(\beta_1,\beta_2) + \eta(\beta_1)\eta(\beta_2), \\ g(\beta_1,\xi) &= \eta(\beta_1) \end{split} \tag{1}$$

for all vector fields β_1 , $\beta_2 \in \chi(M)$. An almost paracontact structure is called a paracontact structure if $g(\beta_1, \phi \beta_2) = d\eta(\beta_1, \beta_2)$ with the associated metric g

[2]. We now define a (1,1) tensor field h by $h = \frac{1}{2}L_{\xi}\phi$, where L denotes the Lie derivative. Then h is symmetric and satisfies the conditions

$$h\phi = -\phi h$$
, $h\xi = 0$, $Tr.h = Tr.\phi h = 0$ (2)

If $\tilde{\mathcal{V}}$ denotes the Levi-Civita connection of g, then we have the following relation

$$\tilde{V}_{\beta_1} \xi = -\phi \beta_1 + \phi h \beta_1 \tag{3}$$

for any $\beta_1 \in \chi(M)$ [2]. For a paracontact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$, if ξ is a killing vector field or equivalently, h = 0, then it is called a K-paracontact

An almost paracontact manifold is said to be para-Sasakian if and only if the following condition holds

$$(\tilde{\nabla}_{\beta_1} \phi)\beta_2 = -g(\beta_1, \beta_2)\xi + \eta(\beta_2)\beta_1$$

for all $\beta_1, \beta_2 \in \chi(M)$ [2]. A normal paracontact metric manifold is para-Sasakian and satisfies

$$R(\beta_1, \beta_2)\xi = -(\eta(\beta_2)\beta_1 - \eta(\beta_1)\beta_2) \tag{4}$$

for all $\beta_1, \beta_2 \in \chi(M)$, but this is not a sufficient condition for a para-contact manifold to be para-Sasakian. It is clear that every para-Sasakian manifold is K-paracontact. But the converse is not always true [16].

A paracontact manifold M is said to be η -Einstein if its Ricci tensor S of type (0,2) is of the from $S(\beta_1,\beta_2) =$ $ag(\beta_1,\beta_2)+b\eta(\beta_1)\eta(\beta_2)$,where a,b are smooth functions on M. If b = 0, then the manifold is also called Einstein [11].

A paracontact metric manifold is said to be a (k,μ) -paracontact manifold if the curvature tensor \tilde{R} satisfies

$$\tilde{R}(\beta_1, \beta_2)\xi = k[\eta(\beta_2)\beta_1 - \eta(\beta_1)\beta_2] + \mu[\eta(\beta_2)h\beta_1 - \eta(\beta_1)h\beta_2]$$
(5)

for all $\beta_1, \beta_2 \in \chi(M)$, where k and μ are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying $R(\beta_1, \beta_2)\xi = 0$ [12].

In particular, if $\mu = 0$, then the paracontact metric manifold is called paracontact metric N(k)-manifold. Thus, for a paracontact metric N(k)-manifold the curvature tensor satisfies the following relation

$$R(\beta_1, \beta_2)\xi = k(\eta(\beta_2)\beta_1 - \eta(\beta_1)\beta_2) \tag{6}$$

for all $\beta_1, \beta_2 \in \chi(M)$. Though the geometric behavior of paracontact metric (k, μ) —spaces is different according as k < -1, or k > -1, but there are some common results for k < -1 and k > -1 [3].

Lemma 2.1 There does not exist any paracontact (k,μ) -manifold of dimension greater than 3 with k >−1 which is Einstein whereas there exist such manifolds for k < -1 [3].

paracontact metric (k,μ) -manifold $(M^{2n+1}\phi, \xi, \eta, g), n > 1$, the following relation hold:

$$h^2 = (k+1)\phi^2$$
, for $k \neq -1$, (7)

$$(\tilde{\nabla}_{\beta_1} \phi) \beta_2 - g(\beta_1 - h\beta_1, \beta_2) \xi + \eta(\beta_2) (\beta_1 - h\beta_1), \quad (8)$$

$$S(\beta_1, \beta_2) = [2(1-n) + n\mu]g(\beta_1, \beta_2) + [2(n-1) + \mu]g(h\beta_1, \beta_2) + [2(n-1) + n(2k-\mu)]\eta(\beta_1)\eta(\beta_2),$$
 (9)

$$S(\beta_1, \xi) = 2nk\eta(\beta_1),\tag{10}$$

$$Q\beta_2 = [2(1-n) + n\mu]\beta_2 + [2(n-1) + \mu]h\beta_2 + [2(n-1) + n(2k-\mu)]\eta(\beta_2)\xi$$
(11)

$$Q\xi = 2nk\xi, g(Q\beta_1, \beta_2) = S(\beta_1, \beta_2), \tag{12}$$

$$Q\phi - \phi Q = 2[2(n-1) + \mu]h\phi$$
 (13)

for any vector fields β_1,β_2 on M^{2n+1} , where Q and S denotes the Ricci operator and Ricci tensor of (M^{2n+1}, g) , respectively [3].

The concept of conharmonic curvature tensor was defined by Y. Ishii [13]. Conharmonic, pseudo-projective, M -projective, W_0 -curvature tensor and W_1 -curvature tensor of a (2n + 1)-dimensional Riemannian manifolds are, respectively, defined

$$L(\beta_1, \beta_2) = R(\beta_1, \beta_2)\beta_3 - \frac{1}{2n-1}[S(\beta_2, \beta_3)\beta_1 - S(\beta_1, \beta_3)\beta_2 + g(\beta_2, \beta_3)Q\beta_1 - g(\beta_1, \beta_3)Q\beta_2], \tag{14}$$

$$P_*(\beta_1, \beta_2)\beta_3 = aR(\beta_1, \beta_2)\beta_3 + b[S(\beta_2, \beta_3)\beta_1 - S(\beta_1, \beta_3)\beta_2] - \frac{r}{2n+1} \left(\frac{a}{2n} + b\right) [g(\beta_2, \beta_3)\beta_1 - g(\beta_1, \beta_3)\beta_2], \tag{15}$$

$$M(\beta_1, \beta_2)\beta_3 = R(\beta_1, \beta_2)\beta_3 - \frac{1}{4n}[S(\beta_2, \beta_3)\beta_1 - S(\beta_1, \beta_3)\beta_2 + g(\beta_2, \beta_3)Q\beta_1 - g(\beta_1, \beta_3)Q\beta_2], \tag{16}$$

$$W_0(\beta_1, \beta_2)\beta_3 = R(\beta_1, \beta_2)\beta_3 - \frac{1}{2n}[S(\beta_2, \beta_3)\beta_1 - g(\beta_1, \beta_3)Q\beta_2], \tag{17}$$

$$M(\beta_{1}, \beta_{2})\beta_{3} = R(\beta_{1}, \beta_{2})\beta_{3} - \frac{1}{4n}[S(\beta_{2}, \beta_{3})\beta_{1} - S(\beta_{1}, \beta_{3})\beta_{2} + g(\beta_{2}, \beta_{3})Q\beta_{1} - g(\beta_{1}, \beta_{3})Q\beta_{2}],$$
(16)

$$W_{0}(\beta_{1}, \beta_{2})\beta_{3} = R(\beta_{1}, \beta_{2})\beta_{3} - \frac{1}{2n}[S(\beta_{2}, \beta_{3})\beta_{1} - g(\beta_{1}, \beta_{3})Q\beta_{2}],$$
(17)

$$W_{1}(\beta_{1}, \beta_{2})\beta_{3} = R(\beta_{1}, \beta_{2})\beta_{3} + \frac{1}{2n}[S(\beta_{2}, \beta_{3})\beta_{1} - S(\beta_{1}, \beta_{3})\beta_{2}],$$
(18)
for all $\beta_{1}, \beta_{2}, \beta_{3} \in \chi(M)$ [14].

(k,μ)-Paracontact Manifolds and Their Curvature Classification in

In this part, we will give the major results for this paper.

Let M be (2n+1) —dimensional (k,μ) —paracontact metric manifold and we denote conharmonic curvature tensor by L, then from (14), we have for later

$$L(\beta_1, \beta_2)\xi = \frac{k}{2n-1}[\eta(\beta_1)\beta_2 - \eta(\beta_2)\beta_1] + \mu[\eta(\beta_2)h\beta_1 - \eta(\beta_1)h\beta_2] - \frac{1}{2n-1}[\eta(\beta_2)Q\beta_1 - \eta(\beta_1)Q\beta_2]. \tag{19}$$

Putting $\beta_1 = \xi$, in (19)

$$L(\xi, \beta_2)\xi = \frac{k}{2n-1}[\beta_2 - \eta(\beta_2)\xi] - \mu h\beta_2 - \frac{1}{2n-1}[2nk\eta(\beta_2)\xi - Q\beta_2]. \tag{20}$$

In (15), choosing $\beta_3 = \xi$ and using (5), we obtain

$$P_*(\beta_1, \beta_2)\xi = \left[ak + 2nkb - \frac{r}{2n+1}\left(\frac{a}{2n} + b\right)\right](\eta(\beta_2)\beta_1 - \eta(\beta_1)\beta_2) + a\mu(\eta(\beta_2)h\beta_1 - \eta(\beta_1)h\beta_2). \tag{21}$$

In (21), it follows

$$P_*(\xi, \beta_2)\xi = [ak + 2nkb - \frac{r}{2n+1}(\frac{a}{2n} + b)](\eta(\beta_2)\xi - \beta_2) - a\mu h\beta_2.$$
 (22)

In the same way, putting $\beta_3 = \xi$ in (16) and using (5), we have

$$M(\beta_1, \beta_2)\xi = \frac{k}{2}(\eta(\beta_2)\beta_1 - \eta(\beta_1)\beta_2 + \mu(\eta(\beta_2)h\beta_1 - \eta(\beta_1)h\beta_2 - \frac{1}{4\eta}(\eta(\beta_2)Q\beta_1 - \eta(\beta_1)Q\beta_2). \tag{23}$$

Using $\beta_1 = \xi$ in (23), we get

$$M(\xi, \beta_2)\xi = \frac{1}{4n}Q\beta_2 - \frac{k\beta_2}{2} - \mu h\beta_2. \tag{24}$$

In (17), choosing $\beta_3 = \xi$, we obtain

$$W_0(\beta_1, \beta_2)\xi = \frac{1}{2n}\eta(\beta_1)Q\beta_2 - k\eta(\beta_1)\beta_2 + \mu(\eta(\beta_2)h\beta_1 - \eta(\beta_1)h\beta_2). \tag{25}$$

and

$$W_0(\xi, \beta_2)\xi = \frac{1}{2n}Q\beta_2 - k\beta_2 - \mu h\beta_2. \tag{26}$$

In (18), choosing $\beta_3 = \xi$ and using (5), we obtain

$$W_1(\beta_1, \beta_2)\xi = 2k(\eta(\beta_2)\beta_1 - \eta(\beta_1)\beta_2) + \mu(\eta(\beta_2)h\beta_1 - \eta(\beta_1)h\beta_2). \tag{27}$$

Setting $\beta_1 = \xi$ in (27), we get

$$W_1(\xi, \beta_2)\xi = 2k(\eta(\beta_2)\xi - \beta_2) - \mu h \beta_2. \tag{28}$$

From (5), we can derive

$$R(\xi, \beta_2)\beta_3 = k(g(\beta_2, \beta_3)\xi - \eta(\beta_3)\beta_2) + \mu(g(h\beta_2, \beta_3)\xi - \eta(\beta_3)h\beta_2), \tag{29}$$

Choosing $\beta_3 = \xi$, in (29)

$$R(\xi, \beta_2)\xi = k(\eta(\beta_2)\xi - \beta_2) - \mu h \beta_2. \tag{30}$$

Theorem 3.1 Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a conharmonic semi-symmetric if and only if M is an η —Einstein manifold.

Proof. Suppose that M is a conharmonic semi-symmetric. This implies that

$$(R(\beta_{1},\beta_{2})L)(\beta_{3},\beta_{4})\beta_{5} = R(\beta_{1},\beta_{2})L(\beta_{3},\beta_{4})\beta_{5} - L(R(\beta_{1},\beta_{2})\beta_{3},\beta_{4})\beta_{5} - L(\beta_{3},R(\beta_{1},\beta_{2})\beta_{4})\beta_{5} - L(\beta_{3},\beta_{4})R(\beta_{1},\beta_{2})\beta_{5} = 0,$$
(31)

for any $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \in \chi(M)$. Taking $\beta_1 = \beta_5 = \xi$ in (31), making use of (19), (29) and (30), for $B = -\frac{1}{2n-1}$, we have

$$(R(\xi, \beta_2)L)(\beta_3, \beta_4)\xi = R(\xi, \beta_2)(Bk(\eta(\beta_4)\beta_3 - \eta(\beta_3)\beta_4) + \mu(\eta(\beta_4)h\beta_3 - \eta(\beta_3)h\beta_4) + B(\eta(\beta_4)Q\beta_3 - \eta(\beta_3)Q\beta_4) - L(k(g(\beta_2, \beta_3)\xi - \eta(\beta_3)\beta_2) + \mu(g(h\beta_2, \beta_3)\xi - \eta(\beta_3)h\beta_2, \beta_4)\xi - L(\beta_3, k(g(\beta_2, \beta_4)\xi - \eta(\beta_4)\beta_2) + \mu(g(h\beta_2, \beta_4)\xi - \eta(\beta_4)h\beta_2)\xi - L(\beta_3, \beta_4)(k(\eta(\beta_2)\xi - \beta_2) - \mu h\beta_2) = 0.$$
(32)

Taking into account (19), (20), (29) and inner product both sides of (32) by $\beta_5 \in \chi(M)$

$$kg(L(\beta_{3},\beta_{4})\beta_{2},\beta_{5}) + \mu g(L(\beta_{3},\beta_{4})f\beta_{2},\beta_{5}) + k\mu \Big(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},h\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})g(\beta_{2},h\beta_{4})\Big) + \mu^{2}(1 + k)\Big(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})g(\beta_{2},\beta_{4})\Big) + B\mu\Big(\eta(\beta_{4})\eta(\beta_{5})S(\beta_{2},h\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})S(\beta_{2},h\beta_{4})\Big) + Bk\Big(\eta(\beta_{4})\eta(\beta_{5})S(\beta_{2},\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})S(\beta_{2},\beta_{4})\Big) + 2nk\mu B\Big(\eta(\beta_{3})\eta(\beta_{5})g(h\beta_{2},\beta_{4}) - g(h\beta_{2},\beta_{3})\eta(\beta_{4})\eta(\beta_{5})\Big) + 2nk^{2}B\Big(g(\beta_{2},\beta_{4})\eta(\beta_{3})\eta(\beta_{5}) - g(\beta_{2},\beta_{3})\eta(\beta_{4})\eta(\beta_{5})\Big) + Bk\Big(g(\beta_{2},\beta_{3})S(\beta_{4},\beta_{5}) - g(\beta_{2},\beta_{4})S(\beta_{3},\beta_{5})\Big) + Bk^{2}\Big(g(h\beta_{2},\beta_{3})S(\beta_{4},\beta_{5}) + g(h\beta_{2},\beta_{4})S(\beta_{3},\beta_{5})\Big) + \mu^{2}\Big(g(h\beta_{2},\beta_{3})g(h\beta_{4},\beta_{5}) - g(h\beta_{2},\beta_{4})g(h\beta_{3},\beta_{5})\Big) + k\mu\Big(g(\beta_{2},\beta_{3})g(h\beta_{4},\beta_{5}) + g(\beta_{2},\beta_{4})g(h\beta_{3},\beta_{5})\Big) = 0.$$
(33)

Putting (7), (10), (14) and choosing $\beta_4 = \beta_2 = e_i$, ξ , in (33), $1 \le i \le n$, for orthonormal basis of $\chi(M)$, we arrive

$$k(1-B)S(\beta_{3},\beta_{5}) + \mu(1-B)S(\beta_{3},h\beta_{5}) + (Bkr + 2n(1+k)[2(n-1) + \mu] + \mu^{2}(1+k) - 2nk^{2}B)g(\beta_{3},\beta_{5}) + (k\mu B - 2nk\mu)g(\beta_{3},h\beta_{5}) + (\mu^{2}(1+k)(2n+1) - Bkr - 2n\mu B(1+k)[2(n-1) + \mu] + 2nk^{2}B(2n+1)\eta(\beta_{3})\eta(\beta_{5}) = 0.$$
(34)

Using (7) and replacing $h\beta_5$ of β_5 in (34), we get

$$k(1-B)S(\beta_3,h\beta_5) + \mu(1-B)(1+k)S(\beta_3,\beta_5) - 2nk\mu(1+k)(1-B)\eta(\beta_2)\eta(\beta_3) + (Bkr + 2n(1+k)[2(n-1) + \mu] + \mu^2(1+k) - 2nk^2B)g(\beta_3,h\beta_5) + (1+k)(k\mu B - 2nk\mu)g(\beta_3,\beta_5) - (1+k)(k\mu B - 2nk\mu)\eta(\beta_3)\eta(\beta_5) = 0.$$
(35)

From (34), (35) and also using (9), for the sake of brevity we set

$$\begin{split} p_1 &= \frac{2nk}{2n-1}, \\ p_2 &= \frac{2n\mu}{2n-1}, \\ p_3 &= \left(-\frac{kr}{2n-1} + 2n(1+k)[2(n-1) + \mu] + \mu^2(1+k) + \frac{2nk^2}{2n-1}\right), \\ p_4 &= \left(-\frac{k\mu}{2n-1} - 2nk\mu\right), \\ p_5 &= \left(\mu^2(1+k)(2n+1) + \frac{kr}{2n-1} + \frac{2n\mu}{2n-1}(1+k)[2(n-1) + \mu] - \frac{2nk^2}{2n-1}(2n+1), \\ \text{and} \\ q_1 &= \left(p_4p_2(1+k) - p_3p_1\right)[2(n-1) + \mu] + \left(p_4p_1 - p_3p_2\right)[2(1-n) + n\mu], \\ q_2 &= \left(p_1^2 - p_2^2(1+k)\right)[2(n-1) + \mu] + \left(p_4p_1 - p_3p_2\right), \\ q_3 &= \left(p_4p_2 - p_3p_2\right)[2(n-1) + n(2k-\mu)] - \left(p_1p_5 + 2nkp_2^2(1+k) + p_4p_2(1+k)\right)[2(n-1) + \mu], \\ \text{we conclude} \end{split}$$

$$q_2S(\beta_3, \beta_5) = q_1g(\beta_3, \beta_5) + q_3\eta(\beta_3)\eta(\beta_5).$$

So, M is an η –Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an η –Einstein manifold, i.e. $q_2S(\beta_3, \beta_5) = q_1g(\beta_3, \beta_5) + q_3\eta(\beta_3)\eta(\beta_5)$, then from equations (35), (34), (33), (32) and (31) we obtain M is a conharmonic semi-symmetric.

Theorem 3.2 Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a pseudo-projective semi-symmetric if and only if M is an Einstein manifold.

Proof. Assume that M is a pseudo-projective semi-symmetric. This yields to

$$(R(\beta_1, \beta_2)P_*)(\beta_3, \beta_4)\beta_5 = R(\beta_1, \beta_2)P_*(\beta_3, \beta_4)\beta_5 - P_*(R(\beta_1, \beta_2)\beta_3, \beta_4)\beta_5 - P_*(\beta_3, R(\beta_1, \beta_2)\beta_4)\beta_5 - P_*(\beta_3, \beta_4)R(\beta_1, \beta_2)\beta_5 = 0,$$
(36)

for any $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \in \chi(M)$. Taking $\beta_1 = \beta_5 = \xi$ in (36) and using (21), (29), (30), for $A = [ak + 2nkb - \frac{r}{2n+1}(\frac{a}{2n} + b)]$, we obtain

$$(R(\xi, \beta_2)P_*)(\beta_3, \beta_4)\xi = R(\xi, \beta_2)(A(\eta(\beta_4)\beta_3 - \eta(\beta_3)\beta_4) + a\mu(\eta(\beta_4)h\beta_3 - \eta(\beta_3)h\beta_4) - P_*(k(g(\beta_2, \beta_3)\xi - \eta(\beta_3)\beta_2) + \mu(g(h\beta_2, \beta_3)\xi - \eta(\beta_3)h\beta_2), \beta_4)\xi - P_*(\beta_3, kg(\beta_2, \beta_4)\xi - \eta(\beta_4)\beta_2) + \mu(g(h\beta_2, \beta_4)\xi - \eta(\beta_4)h\beta_2)\xi - P_*(\beta_3, \beta_4)k(\eta(\beta_2)\xi - \beta_2) - \mu h\beta_2) = 0.$$
(37)

Again, taking into account that (21), (22), (29) in (37), we get

$$kP_{*}(\beta_{3},\beta_{4})\beta_{2} + \mu P_{*}(\beta_{3},\beta_{4})h\beta_{2} + ak\mu(\eta(\beta_{4})g(\beta_{2},h\beta_{3})\xi - \eta(\beta_{3})g(\beta_{2},h\beta_{4})\xi) + a\mu^{2}(1+k)(\eta(\beta_{4})g(\beta_{2},\beta_{3})\xi - \eta(\beta_{3})g(\beta_{2},\beta_{4})\xi) + Ak(g(\beta_{2},\beta_{3})\beta_{4} - g(\beta_{2},\beta_{4})\beta_{3}) + A\mu(g(h\beta_{2},\beta_{3})\beta_{4}) - g(h\beta_{2},\beta_{4})\beta_{3}) + a\mu^{2}(g(h\beta_{2},\beta_{3})h\beta_{4} - g(\beta_{2},\beta_{4})h\beta_{3}) + ak\mu(g(\beta_{2},\beta_{3})h\beta_{4} - g(\beta_{2},\beta_{4})h\beta_{3}) = 0.$$
(38)

Putting $\beta_3 = \xi$, using (7), (21) and inner product both sides of in (38) by $\xi \in \chi(M)$, we get

$$bkS(\beta_2, \beta_4) + b\mu S(\beta_4, h\beta_2) - 2nk^2 bg(\beta_2, \beta_4) - 2nkb\mu g(\beta_4, h\beta_2) = 0$$
(39)

Replacing $h\beta_4$ of β_4 in (39) and making use of (7), we have

$$bkS(\beta_{2},h\beta_{4}) + b\mu(1+k)S(\beta_{2},\beta_{4}) - 2nkb\mu(1+k)\eta(\beta_{2})\eta(\beta_{4}) - 2nk^{2}bg(\beta_{2},h\beta_{4}) - 2nkb\mu(1+k)g(\beta_{2},\beta_{4}) + 2nkb\mu(1+k)\eta(\beta_{2})\eta(\beta_{4}) = 0.$$
 (40)

From (39) and (40), we obtain

$$S(\beta_2, \beta_4) = 2nkg(\beta_2, \beta_4).$$

Thus, M is an Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an Einstein manifold, i.e., $S(\beta_2, \beta_4) = 2nkg(\beta_2, \beta_4)$, then from equations (40), (39), (38), (37) and (36), we arrive M is a pseudo-projective semi-symmetric. This implies that

$$\mu = 2(k+1 - \frac{1}{n}).$$

Theorem 3.3 Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a M -projective semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a M —projective semi-symmetric. This implies that

$$(R(\beta_1, \beta_2)M)(\beta_3, \beta_4)\beta_5 = R(\beta_1, \beta_2)M(\beta_3, \beta_4)\beta_5 - M(R(\beta_1, \beta_2)\beta_3, \beta_4)\beta_5 - M(\beta_3, R(\beta_1, \beta_2)\beta_4)\beta_5 - M(\beta_3, \beta_4)R(\beta_1, \beta_2)\beta_5 = 0,$$
(41)

for any $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \in \chi(M)$. Setting $\beta_1 = \beta_5 = \xi$ in (41) and making use of (23), (29), (30), for $A = \frac{k}{2}$, $B = -\frac{1}{4n}$, we obtain

$$(R(\xi, \beta_2)M)(\beta_3, \beta_4)\xi = R(\xi, \beta_2)(A(\eta(\beta_4)\beta_3 - \eta(\beta_3)\beta_4) + \mu(\eta(\beta_4)h\beta_3 - \eta(\beta_3)h\beta_4) + B(\eta(\beta_4)Q\beta_3 - \eta(\beta_3)Q\beta_4) - M(k(g(\beta_2, \beta_3)\xi - \eta(\beta_3)\beta_2) + \mu(g(h\beta_2, \beta_3)\xi - \eta(\beta_3)h\beta_2), \beta_4)\xi - M(\beta_3, k(g(\beta_2, \beta_4)\xi - \eta(\beta_4)\beta_2) + \mu(g(h\beta_2, \beta_4)\xi - \eta(\beta_4)h\beta_2))\xi - M(\beta_3, \beta_4)(k(\eta(\beta_2)\xi - \beta_2) - \mu h\beta_2) = 0.$$
(42)

Inner product both sides of (42) by $\beta_5 \in \chi(M)$, using of (23), (24) and (29), we get

$$kg(M(\beta_{3},\beta_{4})\beta_{2},\beta_{5}) + \mu g(M(\beta_{3},\beta_{4})h\beta_{2},\beta_{5}) + Ak(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},h\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})g(\beta_{2},\beta_{4})) + \mu^{2}(1 + k)(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{3},\beta_{2}) - \eta(\beta_{3})\eta(\beta_{5})g(\beta_{2},\beta_{4})) + A\mu(\eta(\beta_{4})\eta(\beta_{5})g(h\beta_{2},\beta_{3}) - \eta(\beta_{5})\eta(\beta_{3})g(h\beta_{2},\beta_{4})) + k\mu(\eta(\beta_{4})\eta(\beta_{5})g(h\beta_{2},\beta_{3}) - \eta(\beta_{5})\eta(\beta_{3})g(h\beta_{2},\beta_{4})) + k\mu(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},\beta_{3}) - \eta(\beta_{5})\eta(\beta_{3})g(\beta_{2},\beta_{4})) + k\mu(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},\beta_{3}) - \eta(\beta_{5})\eta(\beta_{3})g(\beta_{5},\beta_{4}) - g(\beta_{2},\beta_{3})g(\beta_{5},\beta_{4}) - g(\beta_{2},\beta_{4})g(\beta_{3},\beta_{5})) + k\mu(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{4},\beta_{5}) - \eta(\beta_{5})\eta(\beta_{3},\beta_{5})) + \mu^{2}(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{5},\beta_{4}) - \eta(\beta_{5})\eta(\beta_{3},\beta_{5})) + k\mu(\eta(\beta_{5})\eta(\beta_{4},\beta_{5}) - \eta(\beta_{5})\eta(\beta_{3},\beta_{5})) + \mu^{2}(\eta(\beta_{5},\beta_{4})\eta(\beta_{5},\beta_{3}) - \eta(\beta_{5})\eta(\beta_{5},\beta_{4})) = 0.$$

$$(43)$$

Making use of (7), (16) and choosing $\beta_3 = \beta_5 = e_i, \xi, 1 \le i \le n$, for orthonormal basis of $\chi(M)$ in (43), we have

$$kS(\beta_4, \beta_2) + \mu S(\beta_4, h\beta_2) - 2nk^2 g(\beta_4, \beta_2) - 2nk\mu g(\beta_4, h\beta_2) = 0.$$
(44)

Replacing $h\beta_2$ of β_2 in (44) and taking into account (7), we get

$$kS(\beta_4, h\beta_2) + \mu(1+k)S(\beta_4, \beta_2) - 2nk^2g(\beta_4, h\beta_2) - 2nk\mu(1+k)g(\beta_4, \beta_2) = 0.$$
(45)

From (44), (45) and by using (9), we set

$$S(\beta_4, \beta_2) = 2nkg(\beta_4, \beta_2),$$

This tell us M is an Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an Einstein manifold, i.e., $S(\beta_4, \beta_2) = 2nkg(\beta_4, \beta_2)$, then from equations (45), (44), (43), (42) and (41), we get M is a M —projective semi-symmetric.

Theorem 3.4 Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a W_0 -semi-symmetric if and only if M is an η —Einstein manifold.

Proof. Assume that M is a W_0 -semi-symmetric. This means that

$$(R(\beta_1, \beta_2)W_0)(\beta_3, \beta_4, \beta_5) = R(\beta_1, \beta_2)W_0(\beta_3, \beta_4)\beta_5 - W_0(R(\beta_1, \beta_2)\beta_3, \beta_4)\beta_5 - W_0(\beta_2, R(\beta_1, \beta_2)\beta_4)\beta_5 - W_0(\beta_3, \beta_4)R(\beta_1, \beta_2)\beta_5 = 0,$$
(46)

for any $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \in \chi(M)$. Setting $\beta_1 = \beta_5 = \xi$ in (46) and making use of (25), (29), (30), for $A = -\frac{1}{2n}$, we obtain

$$(R(\xi, \beta_2)W_0)(\beta_3, \beta_4)\xi = R(\xi, \beta_2)(-A\eta(\beta_3)Q\beta_4 - k\eta(\beta_3)\beta_4 + \mu(\eta(\beta_4)h\beta_3 - \eta(\beta_3)h\beta_4)) - W_0(k(g(\beta_2, \beta_3)\xi - \eta(\beta_3)\beta_4) + \mu(g(h\beta_2, \beta_3)\xi - \eta(\beta_3)h\beta_2, \beta_4)\xi - W_0(\beta_3, k(g(\beta_2, \beta_4)\xi - \eta(\beta_4)\beta_2) + \mu(g(h\beta_2, \beta_4)\xi - \eta(\beta_4)h\beta_2))\xi - W_0(\beta_3, \beta_4)(k(\eta(\beta_2)\xi - \beta_2) - \mu h\beta_2) = 0.$$

$$(47)$$

Using (25), (26), (29) and inner product both sides of (47) by $\beta_5 \in \chi(M)$, we get

$$kg(W_{0}(\beta_{3},\beta_{4})\beta_{2},\beta_{5}) + \mu g(W_{0}(\beta_{3},\beta_{4})h\beta_{2},\beta_{5}) + k\mu \Big(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},h\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})g(\beta_{2},h\beta_{4})\Big) + \mu^{2}(1+k)\Big(\eta(\beta_{4})\eta(\beta_{5})g(\beta_{2},\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})g(\beta_{2},\beta_{4})\Big) + 2nkA\Big(k\eta(\beta_{3})\eta(\beta_{4})g(\beta_{2},\beta_{5}) - \mu\eta(\beta_{4})\eta(\beta_{3})g(h\beta_{2},\beta_{5})\Big) + Ak\Big(S(\beta_{4},\beta_{5})g(\beta_{2},\beta_{3}) - \eta(\beta_{3})\eta(\beta_{5})S(\beta_{2},\beta_{4})\Big) + k^{2}\Big(g(\beta_{2},\beta_{3})g(\beta_{5},\beta_{4}) - g(\beta_{2},\beta_{4})g(\beta_{3},\beta_{5})\Big) + k\mu\Big(g(\beta_{2},\beta_{3})g(h\beta_{4},\beta_{5}) - g(\beta_{2},\beta_{4})g(h\beta_{3},\beta_{5})\Big) + A\mu\Big(g(h\beta_{2},\beta_{3})S(\beta_{4},\beta_{5}) - g(\beta_{2},\beta_{4})g(\beta_{3},\beta_{5})\Big) + k\mu\Big(g(h\beta_{2},\beta_{3})g(\beta_{4},\beta_{5}) + g(h\beta_{2},\beta_{4})g(\beta_{3},\beta_{5})\Big) + \mu^{2}\Big(g(h\beta_{2},\beta_{3})g(h\beta_{4},\beta_{5}) - g(h\beta_{2},\beta_{4})g(h\beta_{3},\beta_{5})\Big) - A\mu\Big(S(h\beta_{2},\beta_{4})\eta(\beta_{3})\eta(\beta_{5}) + \eta(\beta_{3})\eta(\beta_{4})S(h\beta_{2},\beta_{5})\Big) - kA\Big(S(\beta_{2},\beta_{5})\eta(\beta_{3})\eta(\beta_{4}) + S(\beta_{3},\beta_{5})g(\beta_{2},\beta_{4})\Big) - k\Big(\eta(\beta_{5})\eta(\beta_{3})g(\beta_{2},\beta_{4}) - \mu\eta(\beta_{5})\eta(\beta_{3})g(\beta_{2},h\beta_{4})\Big) = 0.$$
(48)

Making use of (7), (17) and choosing $\beta_2 = \beta_4 = e_i$, ξ , $1 \le i \le n$, for orthonormal basis of $\chi(M)$ in (48), we have

$$k(1 - A(2n+1))S(\beta_3, \beta_5) + \mu S(\beta_3, h\beta_5) + (kAr + 2n\mu A(1+k)[2(n-1) + \mu] - 2nk^2 + \mu^2(1+k))g(\beta_3, \beta_4) + k\mu(1 - 2n)g(\beta_3, h\beta_5) + (-k^2(2n+1) - Akr - \mu^2(1+k)(2n+1)(-k^2(2n+1) - Akr - \mu^2(2n+1)(-k^2(2n+1) - Akr - \mu^2(2n+1) - Akr - \mu^2(2n+1)(-k^2(2n+1) - Akr - \mu^2(2n+1) - Akr - \mu^2(2n+1)(-k^2(2n+1) - Akr - \mu^2(2n+1) - Akr - \mu^2(2n+1) - Akr - \mu^2(2n+1)(-k^2(2n+1) - Akr - \mu^2(2n+1) - Akr - \mu^2(2n+1$$

Replacing $h\beta_5$ of β_5 in (49) and taking into account (7), it follows

$$k(1 - A(2n + 1))S(\beta_3, h\beta_5) + \mu(1 + k)S(\beta_3, \beta_5) - 2nk\mu(1 + k)\eta(\beta_3)\eta(\beta_5) + (kAr + 2n\mu A(1 + k)[2(n - 1) + \mu] - 2nk^2 + \mu^2(1 + k)g(\beta_3, h\beta_5) + k\mu(1 + k)(1 - 2n)g(\beta_3, \beta_5) - k\mu(1 + k)(1 - 2n)\eta(\beta_3)\eta(\beta_5) = 0.$$
 (50)

From (49), (50) and by using (9), for the sake of brevity we set

Then (43), (30) and by using (3), for the sake of brevity we set
$$p_1 = k\left(2+\frac{1}{2n}\right),$$

$$p_2 = \left(-\frac{kr}{2n} - \mu(1+k)[2(n-1) + \mu] - 2nk^2 + \mu^2(1+k)\right),$$

$$p_3 = k\mu(1-2n),$$

$$p_4 = \left(-k^2(2n+1) + \frac{kr}{n} - \mu^2(1+k)(2n+1) - k^2(2n+1) - \mu^2(1+k)(2n+1)\right),$$
 and
$$q_1 = \left(p_3\mu(1+k) - p_1p_2\right)[2(n-1) + \mu] + \left(p_1p_3 - p_2\mu\right)[2(1-n) + n\mu],$$

$$q_2 = \left(p_1^2 - \mu^2(1+k)\right)[2(n-1) + \mu] + \left(p_1p_3 - p_2\mu\right),$$

$$q_3 = \left(p_1p_3 - p_2\mu\right)[2(n-1) + n(2k-\mu)] - \left(p_1p_4 + 2nk\mu^2(1+k) + p_3\mu(1+k)\right)[2(n-1) + \mu],$$
 we have

$$q_2S(\beta_3, \beta_5) = q_1g(\beta_3, \beta_5) + q_3\eta(\beta_3)\eta(\beta_5).$$

Thus, M is an η –Einstein manifold. Conversely, let $M^{2n+1}(\varphi,\xi,\eta,g)$ be an η –Einstein manifold, i.e., $q_2S(\beta_3,\beta_5)=q_1g(\beta_3,\beta_5)+q_3\eta(\beta_3)\eta(\beta_5)$, then from equations (50), (49), (48), (47) and (46) we obtain M is a W_0 -semi-symmetric. **Theorem 3.5** Let $M^{2n+1}(\phi,\xi,\eta,g)$ be a (k,μ) -paracontact space. Then M is a W_1 -semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a W_1 -semi-symmetric. This means that

$$(R(\beta_1, \beta_2)W_1)(\beta_3, \beta_4, \beta_5) = R(\beta_1, \beta_2)W_1(\beta_3, \beta_4)\beta_5 - W_1(R(\beta_1, \beta_2)\beta_3, \beta_4)\beta_5 - W_1(\beta_3, R(\beta_1, \beta_2)\beta_4)\beta_5 - W_1(\beta_3, \beta_4)R(\beta_1, \beta_2)\beta_5 = 0,$$
(51)

for any $\beta_1,\beta_2,\beta_3,\beta_4,\beta_5\in\chi(M)$. Setting $\beta_1=\beta_5=\xi$ in (51) and making use of (27), (29) and (30), we obtain

$$(R(\xi, \beta_2)W_1)(\beta_3, \beta_4)\xi = R(\xi, \beta_2)(2k(\eta(\beta_4)\beta_3 - \eta(\beta_3)\beta_4) + \mu(\eta(\beta_4)h\beta_3 - \eta(\beta_3)h\beta_4)) - W_1(k(g(\beta_2, \beta_3)\xi - \eta(\beta_3)\beta_2) + \mu(g(h\beta_2, \beta_3)\xi - \eta(\beta_3)h\beta_2), \beta_4)\xi - W_1(\beta_3, k(g(\beta_2, \beta_4)\xi - \eta(\beta_4)\beta_2) + \mu(g(h\beta_2, \beta_4)\xi - \eta(\beta_4)h\beta_2))\xi - W_1(\beta_3, \beta_4)(k(\eta(\beta_2)\xi - \beta_2) - \mu h\beta_2) = 0.$$
(52)

Using (27) and (29), we get

$$kW_{1}(\beta_{3},\beta_{4})\beta_{2} + \mu W_{1}(\beta_{3},\beta_{4})h\beta_{2} + k\mu(\eta(\beta_{4})g(\beta_{2},h\beta_{3})\xi - \eta(\beta_{3})g(\beta_{2},h\beta_{4})\xi) + \mu^{2}(1+k)(\eta(\beta_{4})g(\beta_{2},\beta_{3})\xi - \eta(\beta_{3})g(\beta_{2},\beta_{4})\xi) + 2k^{2}(g(\beta_{2},\beta_{3})\beta_{4} - g(\beta_{2},\beta_{4})\beta_{3}) + k\mu(g(\beta_{2},\beta_{3})h\beta_{4} - g(\beta_{2},\beta_{4})h\beta_{3}) + 2k\mu(g(h\beta_{2},\beta_{3})\beta_{4} - g(h\beta_{2},\beta_{4})\beta_{3}) + \mu^{2}(g(h\beta_{2},\beta_{3})h\beta_{4} + g(h\beta_{2},\beta_{4})h\beta_{3}) = 0.$$
(53)

Making use of (10), (18) and choosing $\beta_3 = \xi$ and inner product both sides of in (53) by $\xi \in \chi(M)$, we have

$$kS(\beta_4, \beta_2) + \mu S(\beta_4, h\beta_2) - 2nk^2 g(\beta_4, \beta_2) - 2nk\mu g(h\beta_2, \beta_4) = 0.$$
(54)

Replacing $h\beta_2$ of β_2 in (54) and by using (7), we get

$$kS(\beta_4, h\beta_2) + \mu(1+k)S(\beta_4, h\beta_2) - 2nk^2g(\beta_4, h\beta_2) - 2nk\mu(1+k)g(\beta_4, \beta_2) = 0.$$
(55)

From (54) and (55), we obtain $S(\beta_2, \beta_4) = 2nkg(\beta_2, \beta_4)$.

So, M is an Einstein manifold. Conversely, let $M^{2n+1}(\varphi, \xi, \eta, g)$ be an Einstein manifold, i.e., $S(\beta_2, \beta_4) = 2nkg(\beta_2, \beta_4)$, then from equations (55), (54), (53), (52) and (51) we get M is a W_1 -semi-symmetric.

Conflicts of interest

There are no conflicts of interest in this work.

References

- Kaneyuki S., Williams F.L., Almost paracontact and parahodge structures on manifolds, *Nagoya Math. J.*, 99 (1985), 173-187.
- [2] Zamkovoy S., Canonical connections on paracontact manifolds, *Ann. Global Anal. Geom.*, 36 (2009), 37-60.
- [3] Cappelletti-Montano B., Küpeli Erken I., Murathan C., Nullity conditions in paracontact geometry, *Differential Geom. Appl.*, 30 (2012), 665-693.
- [4] Blair D.E., Koufogiorgos T., Papatoniou B.J., Contact metric manifolds satisfying a nullity condition, *Israel J. Math.*, 91 (1995), 189-214.
- [5] Kowalezyk D., On some subclass of semi-symmetric manifolds, Soochow J. Math., 27 (2001), 445-461.
- [6] Prasad B., A pseudo projective curvature tensor on a Riemannian manifold, *Bull. Calcutta Math. Soc.*, 94 (3) (2002), 163-166.
- [7] Ivanov S., Vassilev D., Zamkovoy S., Conformal paracontact curvature and the local flatness theorem, *Geom. Dedicata*, 144 (2010), 79-100.

- [8] Mert T., Characterization of some special curvature tensor on Almost C(a)-manifold, *Asian Journal of Math.* and Computer Research, 29 (1) (2022), 27-41.
- [9] Mert T., Atçeken M., Almost C(a)-manifold on W_0^*-curvature tensor, *Applied Mathematical Sciences*, 15 (15) (2021), 693-703.
- [10] O'Neill B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, (1983).
- [11] [Boothby W.M., An Introduction to Differentiable Manifolds and Riemanniann Geometry, Academic Press, Inc. London, (1986).
- [12] Zamkovoy S., Tzanov V., Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27-34.
- [13] Ishii Y., On conharmonic transformations, Tensor N. S., 7 (1957), 73-80.
- [14] Pokhariyal G.P., Mishra R.S., Curvature tensors and their relativistic significance II, Yokohama Math. J., 19 (2) (1971), 97-103.
- [15] Atçeken M., Uygun P., Characterizations for totally geodesic submanifolds of (k,μ)-paracontact metric manifolds, Korean J. Math., 28 (2020), 555-571.
- [16] Calvaruso G., Homogeneous paracontact metric threemanifolds, *Illinois J. Math.*, 55 (2011), 697-718.

- [17] Szabo Z.I., Structure theorems on Riemannian spaces satisfying R(X,Y)·R=0, I: The local version, *J. Differential Geom.*, 17 (4) (1982), 531-582.
- [18] Tripathi M.M., Gupta P., T-curvature tensor on a semi-Riemannian manifold, *J. Adv. Math. Studies.*, 4 (2011), No. 1, 117-129.
- [19] Uygun P., Atçeken M., On (k,μ) -paracontact metric spaces satisfying some conditions on the W_0^*-curvature tensor, *NTMSCI*, 9 (2), (2021), 26-37.